MOLECULAR BASIS OF ENDOTHELIAL REMODELING BY FLOW

流动内皮重塑的分子基础

基本信息

  • 批准号:
    6184688
  • 负责人:
  • 金额:
    $ 65.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-09-28 至 2004-08-31
  • 项目状态:
    已结题

项目摘要

Hemodynamic forces regulate the structure and function of the blood vessel wall. Vascular endothelial cells (ECs) are exposed to shear stress, the tangential component of the hemodynamic forces acting on the vessel wall. ECs in the straight part of the arterial tree are subjected to laminar flow with high shear stress, whereas cells in the bends and bifurcations are under disturbed patterns with low shear stress but high shear stress gradient. Our hypothesis is that the preferential localization of atherosclerosis in the branch points of the arterial tree and the sparing of the straight parts can be related to the different molecular responses to these flow patterns. The laminar flow in the straight part of the vessels is anti-atherogenic by arresting the EC cell cycle. In contrast, disturbed flow at branch points is pro-atherogenic by increasing EC proliferation. Laminar flow enhances the repair of the dysfunctional endothelium by augmenting EC migration, in comparison to disturbed flow. We will test our hypothesis that laminar flow and disturbed flow activate different molecular signaling pathways to result in the expression of unique sets of genes, thus leading to the functional consequences of anti-atherosclerosis and pro- atherosclerosis, respectively. The research design has three Specific Aims. In Specific Aim 1, we will establish the molecular basis of the regulation of EC cell cycle by different flow patterns. In Specific Aim 2, we will elucidate the molecular mechanisms by which EC migration is modulated by laminar and disturbed flows. In Specific Aim 3, we will identify the genes regulated by laminar flow and disturbed flow by using DNA microarray technology, with the aim of guiding in-depth studies on the flow-responsive genes that modulate EC cell cycle and migration. The proposed research involves partnership among scientists with expertise in vascular biology, physiology, biomechanics, bioengineering, bioinformatics, cell biology, and molecular biology. This interdisciplinary research program will allow us to elucidate the molecular basis of flow-induced modulation of EC turnover and migration, which are two important processes for vascular remodeling. The results from this BRP application will serve to generate new knowledge on mechano- transduction and vascular biology, provide new understanding of the molecular and biomechanical bases of pathogenesis of vascular disorders such as atherosclerosis, and help to develop new therapeutic strategies.
血流动力调节血管壁的结构和功能。 血管内皮细胞(EC)暴露于剪切应力,这是作用在血管壁上的血液动力学的切向成分。 动脉树的直部分中的EC受到高剪切应力的层流流,而弯曲和分叉中的细胞处于干扰模式下,剪切应力低但高剪切应力梯度。 我们的假设是,在动脉树的分支点中,动脉粥样硬化的优先定位和直构的隔离可能与对这些流动模式的不同分子响应有关。 血管中的层流通过阻止EC细胞周期具有抗动脉粥样硬化。 相比之下,分支点的流动通过增加EC增殖是促动脉粥样硬化的。 与流动障碍相比,层流通过增加EC迁移来增强功能失调的内皮修复。 我们将测试我们的假设,即层流和流动流动的流动激活不同的分子信号通路,从而导致独特基因集的表达,从而导致抗动脉粥样硬化和促动脉粥样硬化的功能后果。 研究设计具有三个特定的目标。 在特定的目标1中,我们将通过不同的流动模式建立EC细胞周期调节的分子基础。 在特定的目标2中,我们将阐明EC迁移受层流和干扰流的调节的分子机制。 在特定的目标3中,我们将通过使用DNA微阵列技术来确定受层流流和流动受干扰流动的基因,以指导对调节EC细胞周期和迁移的流动反应基因的深入研究。 拟议的研究涉及具有血管生物学,生理学,生物力学,生物工程,生物信息学,细胞生物学和分子生物学方面的专业知识的科学家之间的伙伴关系。 这项跨学科研究计划将使我们能够阐明流动诱导的EC周转和迁移调节的分子基础,这是血管重塑的两个重要过程。 该BRP应用的结果将有助于产生有关机械转导和血管生物学的新知识,为血管性疾病(如动脉粥样硬化)的发病机理提供了新的了解,并有助于开发新的治疗策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHU CHIEN其他文献

SHU CHIEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHU CHIEN', 18)}}的其他基金

Integration of single-cell imaging and multi-omics sequencing to study EC mechano-pathophysiology
整合单细胞成像和多组学测序来研究 EC 机械病理生理学
  • 批准号:
    10825307
  • 财政年份:
    2023
  • 资助金额:
    $ 65.83万
  • 项目类别:
Locus-specific Imaging of Dynamic Histone Methylations during Reprogramming
重编程过程中动态组蛋白甲基化的位点特异性成像
  • 批准号:
    9922921
  • 财政年份:
    2017
  • 资助金额:
    $ 65.83万
  • 项目类别:
The Organizational Hub and Web Portal for the 4D Nucleome Network
4D 核组网络的组织中心和门户网站
  • 批准号:
    9344559
  • 财政年份:
    2015
  • 资助金额:
    $ 65.83万
  • 项目类别:
The Organizational Hub and Web Portal for the 4D Nucleome Network
4D 核组网络的组织中心和门户网站
  • 批准号:
    8988647
  • 财政年份:
    2015
  • 资助金额:
    $ 65.83万
  • 项目类别:
Mechanism of Atheroprone Mechanotransduction Studied By Single Cell Imaging
单细胞成像研究动脉粥样硬化的机械传导机制
  • 批准号:
    8615815
  • 财政年份:
    2013
  • 资助金额:
    $ 65.83万
  • 项目类别:
Mechanism of Atheroprone Mechanotransduction Studied By Single Cell Imaging
单细胞成像研究动脉粥样硬化的机械传导机制
  • 批准号:
    8787794
  • 财政年份:
    2013
  • 资助金额:
    $ 65.83万
  • 项目类别:
Role of Spatiotemporal Epigenetic Dynamics in Regulating Endothelial Gene Expressions under Flows
时空表观遗传动力学在调节流动下内皮基因表达中的作用
  • 批准号:
    10063534
  • 财政年份:
    2013
  • 资助金额:
    $ 65.83万
  • 项目类别:
Integration of single-cell imaging and multi-omics sequencing to study EC mechano-pathophysiology
整合单细胞成像和多组学测序来研究 EC 机械病理生理学
  • 批准号:
    10443151
  • 财政年份:
    2013
  • 资助金额:
    $ 65.83万
  • 项目类别:
Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
  • 批准号:
    8332732
  • 财政年份:
    2012
  • 资助金额:
    $ 65.83万
  • 项目类别:
Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
  • 批准号:
    10448495
  • 财政年份:
    2012
  • 资助金额:
    $ 65.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了