DETECTING SUBTLE SIGNALS IN GENOMIC SEQUENCE
检测基因组序列中的细微信号
基本信息
- 批准号:6045594
- 负责人:
- 金额:$ 33.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-09-20 至 2004-12-31
- 项目状态:已结题
- 来源:
- 关键词:DNA binding protein DNA footprinting RNA binding protein computer assisted sequence analysis computer program /software computer system design /evaluation gene expression genetic regulatory element genetic techniques genome high throughput technology mathematical model model design /development nucleic acid sequence nucleic acid structure regulatory gene statistics /biometry transcription factor
项目摘要
It is estimated that there are approximately 80,000 genes in the human genome (Fields C., et al. 1994). To turn this genetic blueprint into a functional organism, genes must be expressed in a specific temporal and spatial pattern. Finding signals that control this expression and understanding their language is one of the major challenges of the post- genome era. Laboratory identification of regulatory elements, modules, and regions in genomic sequences is often an arduous, time-consuming, and expensive process. If specific approaches can be developed, computational analyses promise to accelerate this process at minimal cost. The long term goal of the proposed research is to develop and apply Bayesian bioinformatics computational methods which will describe the complete wiring diagram for a genome's transcription regulation system. This description will include four components: 1) the identification of all superfamilies of transcription factors and their classification into functionally related subclasses based on both the DNA recognition motifs and the activator domains; 2) the identification and characterization of a genome's transcriptional regulatory modules and all factor binding elements within them; 3) the full delineation of the connections between factors and their binding elements; 4) a characterization of alternative transcriptional regulatory motifs, including those based on DNA composition, and DNA and RNA structure. These goals will be addressed using Bayesian statistical models and algorithms, the foundations for which we developed during the current award period. These include Gibbs sampling algorithms to assembly superfamilies of transcription factors and multiply align them, transcription factor classification algorithms, exact Bayesian algorithms for the description of compositional and structural heterogeneity, RNA secondary structure, and phylogenetic footprinting, and recursive Gibbs sampling HMM for regulatory module identification and characterization.
据估计,人类基因组中有大约 80,000 个基因(Fields C., et al. 1994)。为了将这种基因蓝图转变为功能有机体,基因必须以特定的时间和空间模式表达。寻找控制这种表达的信号并理解它们的语言是后基因组时代的主要挑战之一。基因组序列中调控元件、模块和区域的实验室鉴定通常是一个艰巨、耗时且昂贵的过程。如果可以开发出特定的方法,计算分析有望以最小的成本加速这一过程。拟议研究的长期目标是开发和应用贝叶斯生物信息学计算方法,该方法将描述基因组转录调控系统的完整接线图。该描述将包括四个部分:1)识别所有转录因子超家族,并根据 DNA 识别基序和激活结构域将其分类为功能相关的子类; 2) 基因组转录调控模块及其内所有因子结合元件的鉴定和表征; 3)充分描述因素及其结合要素之间的联系; 4) 替代转录调控基序的表征,包括基于 DNA 组成、DNA 和 RNA 结构的转录调控基序。这些目标将使用贝叶斯统计模型和算法来实现,这是我们在当前奖励期间开发的基础。其中包括组装转录因子超家族并进行多重比对的吉布斯采样算法、转录因子分类算法、用于描述组成和结构异质性的精确贝叶斯算法、RNA二级结构和系统发育足迹,以及用于调节模块识别的递归吉布斯采样 HMM和表征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles E Lawrence其他文献
Charles E Lawrence的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles E Lawrence', 18)}}的其他基金
ADVANCED MCMC ALGORITHMS FOR BIOMEDICAL DATA ANALYSIS
用于生物医学数据分析的先进 MCMC 算法
- 批准号:
2829243 - 财政年份:1999
- 资助金额:
$ 33.81万 - 项目类别:
ADVANCED MCMC ALGORITHMS FOR BIOMEDICAL DATA ANALYSIS
用于生物医学数据分析的先进 MCMC 算法
- 批准号:
6188486 - 财政年份:1999
- 资助金额:
$ 33.81万 - 项目类别:
DETECTING SUBTLE SEQUENCE SIGNALS IN GENOMIC JUNK
检测基因组垃圾中的细微序列信号
- 批准号:
2519133 - 财政年份:1995
- 资助金额:
$ 33.81万 - 项目类别:
DETECTING SUBTLE SEQUENCE SIGNALS IN GENOMIC 'JUNK'
检测基因组“垃圾”中的细微序列信号
- 批准号:
2209576 - 财政年份:1995
- 资助金额:
$ 33.81万 - 项目类别:
DETECTING SUBTLE SEQUENCE SIGNALS IN GENOMIC JUNK
检测基因组垃圾中的细微序列信号
- 批准号:
2209577 - 财政年份:1995
- 资助金额:
$ 33.81万 - 项目类别:
相似国自然基金
天蓝色链霉菌中DNA甲基化依赖型限制系统的发现与表征
- 批准号:31170083
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Mode of Action of Allosteric HIV-1 Integrase Inhibitors during Late Steps of Viral Replication
变构 HIV-1 整合酶抑制剂在病毒复制后期的作用模式
- 批准号:
9204097 - 财政年份:2016
- 资助金额:
$ 33.81万 - 项目类别:
Biological roles and Mediator-dependent transcription mechanisms of RNA polymerase II(G)
RNA聚合酶II(G)的生物学作用和介体依赖性转录机制
- 批准号:
9009066 - 财政年份:2015
- 资助金额:
$ 33.81万 - 项目类别:
Role of HIV-1 Integrase in the Late Stage of Viral Replication
HIV-1整合酶在病毒复制后期的作用
- 批准号:
8793750 - 财政年份:2014
- 资助金额:
$ 33.81万 - 项目类别:
Novel in vivo regulatory mechanisms of human CYP3A4
人CYP3A4的新型体内调节机制
- 批准号:
8656023 - 财政年份:2014
- 资助金额:
$ 33.81万 - 项目类别:
Role of HIV-1 Integrase in the Late Stage of Viral Replication
HIV-1整合酶在病毒复制后期的作用
- 批准号:
8732362 - 财政年份:2014
- 资助金额:
$ 33.81万 - 项目类别: