Gliders: Excellent New Tools for Observing the Ocean (GENTOO)

滑翔机:出色的海洋观测新工具 (GENTOO)

基本信息

  • 批准号:
    NE/H014756/1
  • 负责人:
  • 金额:
    $ 45.16万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

We all love the idea of having a robot to do our bidding. Scientists are realising that robot technology now offers exciting possibilities to observe our environment in ways we have only dreamt of. We will use a fleet of three robots roaming the ocean near Antarctica to answer science questions that are critical to our ability to predict and manage the ocean and its living resources in an era of unprecedented change. The robots we will use are called ocean gliders. Much like the familiar airborne gliders, they do not have a propeller. Batteries drive a pump to move fluid between one area within the glider and another outside its hull, thus changing whether the glider is denser than seawater, so it sinks, or less dense than seawater, so it rises to the sea surface. It glides up and down, communicating via mobile phone with the scientists controlling it each time it comes to the surface. Oil prices have risen sharply in recent years, and ships use a great deal of oil. Using gliders as part of our future ocean and climate observing systems will save tax-payers' money since some ocean observations can be done much more efficiently by remotely controlled gliders. Gliders can also observe the ocean when we'd really rather not be there with ships, such as in winter or in strong winds and heavy seas. This project plans to show that these possibilities are within our grasp. We have assembled a multidisciplinary team of scientists who together are grappling with puzzles about how the ocean system works around Antarctica. Dense cold water sinks around the continent of Antarctica when cold wind blows over the water and helps sea ice to form. We've known for nearly 100 years that this happens in the southern Weddell Sea. We think that this might now be happening in a new region, because of the recent collapse of the Larsen Ice Shelf. Our gliders will measure the amount of dense water spilling off the continental shelf. This is important because climate models suggest that the amount and properties of this dense water are likely to impact on the global ocean overturning circulation that controls our climate; we need to know if these are changing. This dense water spilling over the continental slope probably also affects where the ocean currents are. So these currents might be moving further onshore or offshore, as the dense water changes. We'll try to measure and understand this. These changes in the ocean currents also affect the animals living in the waters near Antarctica. Krill are shrimp-like creatures that form the prey for animals such as whales, seals and penguins, not to mention underpinning a multi-million pound krill fishing industry (ever had a krill pizza?). Krill lay their eggs around the Antarctic Peninsula, and are then carried across the Scotia Sea to South Georgia by the ocean currents. Whilst the west Antarctic Peninsula is well surveyed, we don't know how many krill are in the Weddell Sea, on the eastern side of the Peninsula, possibly spending the winter under sea ice. Might the changes in ocean current affect whether these krill reach South Georgia? If we can establish that the krill are surviving under the ice and could travel to South Georgia, it may be that marine mammals and the krill fishing industry will be less vulnerable to climate change than we have feared. In which case, krill may become a more important food resource for us humans too in an uncertain future; you never know, the krill pizza may find its way to your local supermarket before long!
我们都喜欢拥有一个机器人进行招标的想法。科学家们意识到机器人技术现在提供了令人兴奋的可能性,可以以我们梦dream以求的方式观察我们的环境。我们将使用一支由三个机器人组成的机器人在南极附近漫游海洋,以回答科学问题,这些问题对于我们在前所未有的变化时代预测和管理海洋及其生存资源至关重要。我们将使用的机器人称为海洋滑翔机。就像熟悉的机载滑翔机一样,它们没有螺旋桨。电池驱动泵以在滑翔机内的一个区域和船体外的另一个区域之间移动液体,从而改变滑翔机是否比海水更密集,因此它会下沉或比海水密集,因此它升至海面。它上下滑动,通过手机与科学家进行控制,每次浮出水面时都会控制它。近年来,石油价格急剧上涨,船只使用大量石油。使用滑翔机作为我们未来的海洋和气候观察系统的一部分,将节省税收者的资金,因为通过远程控制的滑翔机可以更有效地进行一些海洋观察。当我们真的不想在船上(例如冬季或强风和大海)到那里时,滑翔机也可以观察到海洋。该项目计划表明这些可能性在我们的掌握范围内。我们组建了一个由科学家组成的多学科团队,他们共同努力争取海洋系统在南极洲周围如何运作的难题。当冷风吹过水并帮助海冰形成时,浓缩的冷水在南极洲大陆周围下沉。我们已经知道近100年来,这发生在韦德尔南部。我们认为,由于Larsen冰架最近崩溃,现在可能正在一个新地区发生。我们的滑翔机将测量从大陆架上溢出的浓水量。这很重要,因为气候模型表明,这种密集水的数量和特性可能会影响控制我们气候的全球海洋循环。我们需要知道这些是否在改变。这种密集的水在大陆斜坡上溢出也可能会影响洋流的位置。因此,随着密集的水变化,这些电流可能正在进一步移动在陆上或海上。我们将尝试衡量和理解这一点。洋流的这些变化也影响了生活在南极附近水域中的动物。磷虾是虾状的生物,构成了鲸鱼,海豹和企鹅等动物的猎物,更不用说为数百万磅的磷虾钓鱼业(曾经有一个磷虾比萨饼吗?)。磷虾在南极半岛周围产卵,然后通过洋流将鸡蛋带到斯科舍省,到达佐治亚州南部。尽管对南极半岛西部的调查进行了良好的调查,但我们不知道在半岛东侧的韦德尔海有多少磷虾,可能会在海冰下度过冬天。海洋电流的变化会影响这些磷虾是否到达佐治亚州南部?如果我们能够确定磷虾在冰上生存并可以前往乔治亚州南部,那么海洋哺乳动物和磷虾捕鱼业将不太容易受到气候变化的影响。在这种情况下,在不确定的未来中,奎伯里尔也可能成为我们人类的更重要的食物资源。您永远都不知道,奎得尔披萨可能很快就会通往当地的超市!

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Assessing the potential of autonomous submarine gliders for ecosystem monitoring across multiple trophic levels (plankton to cetaceans) and pollutants in shallow shelf seas
  • DOI:
    10.1016/j.mio.2014.06.002
  • 发表时间:
    2014-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Suberg;R. Wynn;J. Kooij;L. Fernand;Sophie Fielding;Damien Guihen;D. Gillespie;Mark P Johnson;K. Gkikopoulou;I. Allan;B. Vrana;P. I. Miller;D. Smeed;A. Jones
  • 通讯作者:
    L. Suberg;R. Wynn;J. Kooij;L. Fernand;Sophie Fielding;Damien Guihen;D. Gillespie;Mark P Johnson;K. Gkikopoulou;I. Allan;B. Vrana;P. I. Miller;D. Smeed;A. Jones
Examining Antarctic krill net avoidance with a net-mounted echo-sounder
使用网式回声测深仪检查南极磷虾网的规避情况
Antarctic krill likely avoid underwater gliders
南极磷虾可能会避开水下滑翔机
Gliders: Excellent New Tools for Observing the Ocean, RRS James Clark Ross Cruise Report JR255A
滑翔机:观测海洋的绝佳新工具,RRS 詹姆斯·克拉克·罗斯游轮报告 JR255A
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karen Heywood
  • 通讯作者:
    Karen Heywood
Ocean processes at the Antarctic continental slope.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sophie Fielding其他文献

School characteristics of mesopelagic fish at South Georgia
南乔治亚岛中层鱼类的群落特征
  • DOI:
    10.1016/j.dsr.2013.07.007
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Saunders;Sophie Fielding;S. Thorpe;G. Tarling
  • 通讯作者:
    G. Tarling
Environmental correlates of Antarctic krill distribution in the Scotia Sea and southern Drake Passage
斯科舍海和德雷克海峡南部南极磷虾分布的环境相关性
  • DOI:
    10.1093/icesjms/fsw097
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    J. Silk;S. Thorpe;Sophie Fielding;E. Murphy;P. Trathan;J. Watkins;S. Hill
  • 通讯作者:
    S. Hill
Classification of Southern Ocean krill and icefish echoes using random forests
使用随机森林对南大洋磷虾和冰鱼回波进行分类
  • DOI:
    10.1093/icesjms/fsw057
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Niall G. Fallon;Sophie Fielding;P. Fernandes
  • 通讯作者:
    P. Fernandes
Threatened species drive the strength of the carbonate pump in the northern Scotia Sea
受威胁物种推动了斯科舍海北部碳酸盐泵的强度
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    C. Manno;F. Giglio;G. Stowasser;Sophie Fielding;P. Enderlein;G. Tarling
  • 通讯作者:
    G. Tarling
Colour maps for fisheries acoustic echograms
渔业声学回波图彩色图
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robert E Blackwell;Richard Harvey;B. Queste;Sophie Fielding
  • 通讯作者:
    Sophie Fielding

Sophie Fielding的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sophie Fielding', 18)}}的其他基金

Can you hear marine snow falling?
你能听到海上降雪的声音吗?
  • 批准号:
    NE/X00953X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 45.16万
  • 项目类别:
    Research Grant
Southern Ocean Network of Acoustics (SONA)
南大洋声学网络 (SONA)
  • 批准号:
    NE/K011308/1
  • 财政年份:
    2013
  • 资助金额:
    $ 45.16万
  • 项目类别:
    Research Grant
The role of krill grazing in Southern Ocean nutrient cycles
磷虾放牧在南大洋营养循环中的作用
  • 批准号:
    NE/F01547X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 45.16万
  • 项目类别:
    Research Grant

相似海外基金

TP53変異を持つ骨髄性造血器腫瘍の染色体異常の標的遺伝子の解明と新規治療法の創出
阐明TP53突变骨髓造血肿瘤染色体异常的靶基因并创造新的治疗方法
  • 批准号:
    24K19199
  • 财政年份:
    2024
  • 资助金额:
    $ 45.16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Machine learning to find new extraction solvents that has both excellent performance for separation and recovery of rare metals and low environmental impacts
机器学习寻找新的萃取溶剂,该溶剂既具有优异的稀有金属分离和回收性能,又对环境影响低
  • 批准号:
    23H01756
  • 财政年份:
    2023
  • 资助金额:
    $ 45.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of new artificial dermis with dynamic support structure for preventing a scar contracture and inducing excellent wound healing
开发具有动态支撑结构的新型人造真皮,以防止疤痕挛缩并诱导伤口良好愈合
  • 批准号:
    19K10021
  • 财政年份:
    2019
  • 资助金额:
    $ 45.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of the new PEEK cervical spine spacer with high safety and excellent bone conduction
开发安全性高、骨传导优良的新型PEEK颈椎垫片
  • 批准号:
    18K08941
  • 财政年份:
    2018
  • 资助金额:
    $ 45.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Excellent visibility and persistence with new phosphorescent materials. Creating light-sensitive garments for the safety of the socially disadvantaged
新型磷光材料具有出色的可见度和持久性。
  • 批准号:
    17K12880
  • 财政年份:
    2017
  • 资助金额:
    $ 45.16万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了