Multi-level mapping of mitochondrial quality control pathways in Parkinson's dopaminergic neurons

帕金森多巴胺能神经元线粒体质量控制途径的多级图谱

基本信息

  • 批准号:
    MR/Y014987/1
  • 负责人:
  • 金额:
    $ 133.77万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Parkinson's disease (PD) is a neurodegenerative disorder that affects movement, cognition, and behaviour. One of the causes of these movement problems is the progressive loss of dopamine-producing neurons in the substantia nigra, a region of the brain that is involved in movement control. The cause of PD is not fully understood, in some people it is caused by large changes in a few genes but in most people with Parkinson's it is thought to be caused by a combination of genetic and environmental factors.Two key features of cells that are lost in PD are the accumulation of clumps of a protein called alpha-synuclein and dysfunction of mitochondria. Mitochondria are the powerhouses of the cell, and they play critical roles in energy production as well as affecting many aspects of how cells work. The dopamine-producing cells have several features including their size and activity that make them more susceptible to mitochondrial damage.Mitophagy ('eating mitochondria') is a process by which damaged mitochondria are degraded by the cell. It is a tightly controlled process that is essential for maintaining the health of mitochondria and cells. Decreases in mitophagy have been linked to a variety of neurodegenerative diseases, including PD. In particular, changes in genes that control mitophagy cause early-onset PD. We have recently discovered that these clumps of the protein alpha-synuclein can damage mitochondria and activate the process of mitophagyThis study will first understand how the dopamine-producing cells usually perform mitophagy as this appears to be different to other cell types. We will then investigate how clumps of alpha-synuclein or rare changes in genes which control mitophagy affect how cells perform mitophagy.Using this information, we will then investigate how small changes in genes that are linked to (but don't cause) PD affect mitophagy. To understand how these genes might be involved in changing mitophagy, we will use new technology, called CRISPR activation or CRISPR interference, to mimic the effect of these gene changes by increasing or decreasing how active the gene is- like a volume controller.To further understand how these genes affect dopamine producing cells, we will measure the levels of lots of proteins in these cells. Using a new technique we can also measure how active the proteins are, giving us a more complete picture of how small gene changes that are more common in PD affect cells. This will be interesting as it may tell us more about changes in mitophagy but it could tell us that other processes in the cell (like alpha-synuclein clumping) are changed. We will also be able to see which gene changes are similar to each other and which are different and may mean we are able to group and treat people with Parkinson's accurately.This research will tell us about how small gene changes might build up to eventually cause PD in some people and which parts of the cell are most affected. Given mitochondria are key to the dopamine-producing cells, we will first focus on this and get a very detailed picture of this that may lead to identifying which people might benefit the most from mitochondria-targeted treatments.This research will be used by many PD researchers and will help us understand how common gene changes might mimic the rarer larger gene changes that cause PD, this understanding will lead to better understanding of PD and eventually new treatments.
帕金森病 (PD) 是一种影响运动、认知和行为的神经退行性疾病。这些运动问题的原因之一是黑质中产生多巴胺的神经元逐渐丧失,黑质是大脑中参与运动控制的区域。帕金森病的病因尚不完全清楚,在某些人中,帕金森病是由少数基因的巨大变化引起的,但在大多数帕金森病患者中,帕金森病被认为是由遗传和环境因素共同引起的。细胞的两个关键特征是PD 中的损失是一种称为 α-突触核蛋白的蛋白质团块的积累和线粒体功能障碍。线粒体是细胞的动力源,它们在能量产生中发挥着关键作用,并影响细胞工作的许多方面。产生多巴胺的细胞具有多种特征,包括其大小和活性,使它们更容易受到线粒体损伤。线粒体自噬(“吃掉线粒体”)是细胞降解受损线粒体的过程。这是一个严格控制的过程,对于维持线粒体和细胞的健康至关重要。线粒体自噬的减少与多种神经退行性疾病有关,包括帕金森病。特别是控制线粒体自噬的基因变化会导致早发性帕金森病。我们最近发现,这些蛋白质 α-突触核蛋白团块可以损伤线粒体并激活线粒体自噬过程。这项研究将首先了解产生多巴胺的细胞通常如何进行线粒体自噬,因为这似乎与其他细胞类型不同。然后,我们将研究 α-突触核蛋白团块或控制线粒体自噬的基因的罕见变化如何影响细胞进行线粒体自噬的方式。然后,我们将利用这些信息,研究与 PD 相关(但不会引起)的基因的微小变化如何影响细胞的线粒体自噬。线粒体自噬。为了了解这些基因如何参与改变线粒体自噬,我们将使用称为 CRISPR 激活或 CRISPR 干扰的新技术,通过增加或减少基因的活性(就像音量控制器)来模拟这些基因变化的效果。了解这些基因如何影响多巴胺产生细胞,我们将测量这些细胞中许多蛋白质的水平。使用新技术,我们还可以测量蛋白质的活性,让我们更全面地了解帕金森病中更常见的微小基因变化如何影响细胞。这会很有趣,因为它可能会告诉我们更多有关线粒体自噬变化的信息,但它可能会告诉我们细胞中的其他过程(如α-突触核蛋白聚集)发生了变化。我们还将能够看到哪些基因变化彼此相似,哪些不同,这可能意味着我们能够准确地对帕金森病患者进行分组和治疗。这项研究将告诉我们微小的基因变化如何积累起来最终导致帕金森病某些人的帕金森病以及细胞的哪些部分受影响最严重。鉴于线粒体是产生多巴胺的细胞的关键,我们将首先关注这一点,并对此进行非常详细的了解,这可能有助于确定哪些人可能从线粒体靶向治疗中受益最多。这项研究将被许多 PD 使用研究人员将帮助我们了解常见的基因变化如何模仿导致帕金森病的罕见较大基因变化,这种理解将有助于更好地理解帕金森病,并最终带来新的治疗方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brent Ryan其他文献

New developments in the Life Table Analysis System of the National Institute for Occupational Safety and Health.
国家职业安全卫生研究所生命表分析系统的新进展。

Brent Ryan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

钙稳态失衡引起蛋鸡等级前卵泡闭锁及其机制的研究
  • 批准号:
    32372953
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
单色光通过m6A修饰circNTRK2调控miR-205b/StAR轴影响鸽等级卵泡选择的机制研究
  • 批准号:
    32372875
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
甲烷干重整等级孔泡沫反应器中对流传热与辐射传热协同强化机制研究
  • 批准号:
    22308058
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
食用真菌细胞核等级秩序及其分子调控机制的研究
  • 批准号:
    32372789
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
新型实用化量子密码协议的高安全等级理论分析
  • 批准号:
    12374473
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

A mixed methods approach to address multi-level barriers to care for migratory men living with HIV in South Africa
采用混合方法解决照顾南非艾滋病毒携带者移民男性的多层次障碍
  • 批准号:
    10403224
  • 财政年份:
    2022
  • 资助金额:
    $ 133.77万
  • 项目类别:
A mixed methods approach to address multi-level barriers to care for migratory men living with HIV in South Africa
采用混合方法解决照顾南非艾滋病毒携带者移民男性的多层次障碍
  • 批准号:
    10689689
  • 财政年份:
    2022
  • 资助金额:
    $ 133.77万
  • 项目类别:
MASALA-2G: Multi-level Assessment of the South Asian Life-course of Atherosclerosis (2nd Generation Offspring Study)
MASALA-2G:南亚动脉粥样硬化生命历程的多层次评估(第二代后代研究)
  • 批准号:
    10191354
  • 财政年份:
    2021
  • 资助金额:
    $ 133.77万
  • 项目类别:
MASALA-2G: Multi-level Assessment of the South Asian Life-course of Atherosclerosis (2nd Generation Offspring Study)
MASALA-2G:南亚动脉粥样硬化生命历程的多层次评估(第二代后代研究)
  • 批准号:
    10407490
  • 财政年份:
    2021
  • 资助金额:
    $ 133.77万
  • 项目类别:
MASALA-2G: Multi-level Assessment of the South Asian Life-course of Atherosclerosis (2nd Generation Offspring Study)
MASALA-2G:南亚动脉粥样硬化生命历程的多层次评估(第二代后代研究)
  • 批准号:
    10676087
  • 财政年份:
    2021
  • 资助金额:
    $ 133.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了