Breaking the Barrier: Mapping protein interactions in the bacterial outer membrane as targets for new antimicrobials

打破障碍:绘制细菌外膜中的蛋白质相互作用作为新抗菌药物的目标

基本信息

  • 批准号:
    MR/Y012453/1
  • 负责人:
  • 金额:
    $ 279.56万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Across human history, bacteria have been responsible for a huge burden of disease and mortality that only lessened with the discovery of vaccination and antibiotics. We now face a rising tide of antimicrobial resistance, and are experiencing a slow-moving pandemic of hospital-acquired infections by drug-resistant bacteria. Alongside better prevention, control, and surveillance, there is an urgent need to identify new targets against which we can develop new antibiotic drugs. Of particular concern are the Gram-negative group of bacteria. Of the five microorganisms identified as urgent threats by the US Centres for Disease Control, three are Gram-negative bacteria, and while there are worryingly few new antibiotics in trials, even fewer target Gram-negative bacteria. Membranes, and the proteins associated with them, constitute the majority of current drug targets across multiple disease areas, largely because membranes are the basis for much compartmentalisation and communication in and between cells. Gram-negative bacteria have a unique, additional, protective outer membrane (OM) that shields the bacterium from its environment. The OM is a major barrier to toxins and antibiotics, and is critical for bacterial growth, virulence, pathogenesis, and the formation of biofilms (which are important for establishing many infections). All biological membranes have two leaflets of amphipathic lipid molecules (typically phospholipids) that form a bilayer, and the lipids in each leaflet are different (asymmetric). The bacterial OM is perhaps the most striking example of membrane asymmetry in biology, with an inner leaflet dominated by phospholipids (as in normal membranes), and an outer leaflet dominated by lipopolysaccharide molecules (which are unique to the bacterial membrane). Integral outer membrane proteins (OMPs), which all have a barrel-shaped structure, have thus evolved to fold and function in a different environment to proteins in other membranes: they experience a very rigid membrane because the lipopolysaccharide clumps together. Furthermore, they don't move around very much in the membrane, and their conformations and interactions are dictated by interactions with other proteins and lipopolysaccharide that are missing in other membranes, but essential for bacterial growth and survival. The OM is thus a fascinating environment that could provide a rich source of new targets for antibacterial interventions. In this MRC programme grant, we will integrate functional and structural studies on the bacterial OM, with the latest innovations in protein structure (and protein interaction) prediction, and in our ability to design new proteins that can bind target proteins. Working in the test tube and with whole bacterial cells, we will learn how OMPs naturally fold up and become embedded within the outer membrane, how they interact with each other and with LPS molecules when they're in that membrane, and how these interactions affect the ways proteins work and how bacteria grow. Ultimately, we want to use these discoveries to illuminate new ways of killing bacteria, or at least weakening their defences so that other drugs can kill them. A programme grant is essential because it will allow us to build a talented team that can work together to make discoveries at a pace and scale that would be impossible via individual, smaller project grants, and it will allow us to place the UK at the forefront of this vital area of research.
纵观人类历史,细菌造成了巨大的疾病和死亡负担,而随着疫苗接种和抗生素的发现,这种负担才得以减轻。我们现在面临着不断上升的抗菌药物耐药性浪潮,并且正在经历耐药细菌医院获得性感染的缓慢流行。除了更好的预防、控制和监测外,还迫切需要确定新的靶标,以开发新的抗生素药物。特别值得关注的是革兰氏阴性细菌。在美国疾病控制中心确定为紧急威胁的五种微生物中,有三种是革兰氏阴性菌,尽管处于试验阶段的新抗生素少得令人担忧,但针对革兰氏阴性菌的抗生素就更少了。膜以及与其相关的蛋白质构成了当前多个疾病领域的大部分药物靶点,这主要是因为膜是细胞内和细胞间许多区隔和通讯的基础。革兰氏阴性细菌具有独特的附加保护性外膜 (OM),可以保护细菌免受环境影响。 OM 是毒素和抗生素的主要屏障,对于细菌生长、毒力、发病机制和生物膜的形成(这对于建立许多感染很重要)至关重要。所有生物膜都有两个形成双层的两亲性脂质分子(通常是磷脂)小叶,并且每个小叶中的脂质是不同的(不对称)。细菌 OM 可能是生物学中膜不对称性最引人注目的例子,其内部小叶以磷脂为主(如正常膜),而外部小叶以脂多糖分子为主(这是细菌膜所特有的)。整体外膜蛋白(OMP)都具有桶状结构,因此进化为在与其他膜中的蛋白质不同的环境中折叠和发挥作用:它们经历了非常坚硬的膜,因为脂多糖聚集在一起。此外,它们在膜中移动不多,它们的构象和相互作用是由与其他蛋白质和脂多糖的相互作用决定的,这些蛋白质和脂多糖在其他膜中缺失,但对于细菌的生长和生存至关重要。因此,OM 是一个令人着迷的环境,可以为抗菌干预提供丰富的新靶点。在这项 MRC 计划拨款中,我们将整合细菌 OM 的功能和结构研究、蛋白质结构(和蛋白质相互作用)预测的最新创新,以及设计能够结合目标蛋白质的新蛋白质的能力。在试管和整个细菌细胞中工作,我们将了解 OMP 如何自然折叠并嵌入外膜内,它们在外膜中如何彼此相互作用以及与 LPS 分子相互作用,以及这些相互作用如何影响蛋白质的工作方式和细菌的生长方式。最终,我们希望利用这些发现来阐明杀死细菌的新方法,或者至少削弱它们的防御能力,以便其他药物可以杀死它们。项目拨款至关重要,因为它将使我们能够建立一支才华横溢的团队,能够共同努力,以通过个人较小的项目拨款不可能实现的速度和规模进行发现,并使我们能够将英国置于最前沿这个重要的研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neil Ranson其他文献

Neil Ranson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neil Ranson', 18)}}的其他基金

Delivery and clearance of outer membrane proteins to the bacterial outer membrane
外膜蛋白向细菌外膜的递送和清除
  • 批准号:
    BB/X015653/1
  • 财政年份:
    2023
  • 资助金额:
    $ 279.56万
  • 项目类别:
    Research Grant
A plasma focused ion beam microscope for Structural Cell Biology at the Astbury Biostructure Laboratory
阿斯特伯里生物结构实验室用于结构细胞生物学的等离子体聚焦离子束显微镜
  • 批准号:
    BB/X019373/1
  • 财政年份:
    2023
  • 资助金额:
    $ 279.56万
  • 项目类别:
    Research Grant
Unravelling the tissue-specific geography of protein aggregation in human disease
揭示人类疾病中蛋白质聚集的组织特异性地理
  • 批准号:
    MR/W031515/1
  • 财政年份:
    2022
  • 资助金额:
    $ 279.56万
  • 项目类别:
    Research Grant
A cryo-capable electron microscope for the Astbury Biostructure Laboratory
阿斯特伯里生物结构实验室的冷冻电子显微镜
  • 批准号:
    BB/W019485/1
  • 财政年份:
    2022
  • 资助金额:
    $ 279.56万
  • 项目类别:
    Research Grant
The Structural Biology of Amyloid Aggregation
淀粉样蛋白聚集的结构生物学
  • 批准号:
    MR/T011149/1
  • 财政年份:
    2020
  • 资助金额:
    $ 279.56万
  • 项目类别:
    Research Grant
A world of virus structures: understanding how non-icosahedral capsids are built
病毒结构的世界:了解非二十面体衣壳是如何构建的
  • 批准号:
    BB/T004525/1
  • 财政年份:
    2020
  • 资助金额:
    $ 279.56万
  • 项目类别:
    Research Grant
Exploiting the power of heterologous expression in plants to discover new virus structure.
利用植物异源表达的力量来发现新的病毒结构。
  • 批准号:
    BB/R00160X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 279.56万
  • 项目类别:
    Research Grant
Untangling the processes of replication in and encapsidation in Picornavirales
解开小核糖核酸病毒目的复制和衣壳化过程
  • 批准号:
    BB/L021250/1
  • 财政年份:
    2014
  • 资助金额:
    $ 279.56万
  • 项目类别:
    Research Grant
Defining the molecular pathway for yeast prion fibril assembly using cryo-electron microscopy
使用冷冻电子显微镜定义酵母朊病毒原纤维组装的分子途径
  • 批准号:
    BB/E01433X/1
  • 财政年份:
    2007
  • 资助金额:
    $ 279.56万
  • 项目类别:
    Research Grant

相似国自然基金

S100A6通过调控ZNF750组蛋白甲基化促进糖尿病角质形成细胞分化障碍的机制研究
  • 批准号:
    82302802
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白血病化疗后肿瘤细胞坏死释放IL-1α导致心脏能量代谢障碍的实验研究
  • 批准号:
    82370249
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
NETs通过m6A修饰lncRNA-H19调控内皮细胞铁死亡介导糖尿病足血管新生障碍的机制研究
  • 批准号:
    82370497
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于STAT1介导的HMGB1炎症通路探讨运动改善COPD膈肌功能障碍的作用机制
  • 批准号:
    82372573
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
星形胶质细胞糖代谢重编程介导Lactoferrin基因缺失引发的早期生长迟缓和认知障碍
  • 批准号:
    32371037
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Developing in situ transcriptomics of a bioprinted follicular skin model
开发生物打印毛囊皮肤模型的原位转录组学
  • 批准号:
    10678027
  • 财政年份:
    2023
  • 资助金额:
    $ 279.56万
  • 项目类别:
Keratinocyte adhesion and signaling in the skin blistering disease pemphigus vulgaris
皮肤起疱病寻常型天疱疮中的角质形成细胞粘附和信号传导
  • 批准号:
    10732360
  • 财政年份:
    2023
  • 资助金额:
    $ 279.56万
  • 项目类别:
Genetics of fungal persistence and pathogenicity in mammalian hosts
哺乳动物宿主中真菌持久性和致病性的遗传学
  • 批准号:
    10874018
  • 财政年份:
    2023
  • 资助金额:
    $ 279.56万
  • 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
  • 批准号:
    10810913
  • 财政年份:
    2023
  • 资助金额:
    $ 279.56万
  • 项目类别:
Statistical Methods for Enhanced Mapping of Microbiome Relationships
增强微生物组关系图谱的统计方法
  • 批准号:
    10719129
  • 财政年份:
    2023
  • 资助金额:
    $ 279.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了