A novel technology to understand environmental changes in marine sediments

了解海洋沉积物环境变化的新技术

基本信息

  • 批准号:
    MR/X035387/1
  • 负责人:
  • 金额:
    $ 164.44万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

It is well established that the ocean is of enormous importance as it has an impact on climate, weather, global food security, public health and the economy; however, currently the increasing pressure on the ocean results in unseen levels of pollution and alterations of globally important chemical cycles. From the coast to the deep sea the ocean floor is largely covered by loosely aggregated sediments. These sediments form one of the largest bioreactors on Earth and play a crucial role in the state and health of the marine environment as they convert, store and release chemical compounds that affect and control life. For example, they promote the production of potent greenhouse gases and are a major sink for oxygen, but also recycle nutrients and retain pollutants. These biogeochemical reactions lead to steep gradients of chemical compounds in the upper centimetre to decimetre of the sediments, which can be used to understand the processes proceeding in the sediment, their effects on the global biogeochemical cycles and their impact on the marine environment. However, with traditional analysis methods these gradients can often not be properly resolved, both spatially and temporally, and they are often disturbed during the collection of the sediment; in addition, these measurements are costly and time-consuming.In the SANDMAN project I will develop a new instrument to measure gradients of important biogeochemical compounds, such as nutrients (nitrate, phosphate), metals (iron) and carbonate system parameters (total alkalinity) directly within the seafloor sediment, in particular the porewater, by combining cutting-edge Lab-on-Chip sensors with deep sea platform technology that can operate in extreme environments in the oceans over longer periods of time. The Lab-On-Chip sensors, which use miniaturized standard laboratory analyses on an automated microfluidic platform, are developed at the National Oceanography Centre and only recently became available for longer-term applications. These sensors are ideal for measuring the chemistry of porewater directly in the sediment as they are very energy efficient and can be deployed for up to a year and only use very little sample volume, hence the steep gradients in the sediment can easily be resolved. During the SANDMAN project I will lead the sensor adaptation and adjustment of the hardware for conditions in sediments, the design of a fluid sampling system to separate the porewater from the solid phase of the sediment and the combination of these components in a unique seafloor instrument. The functionality of this instrument will first be tested in a controlled laboratory environment, then in a costal test station and afterwards it will be used to answer scientifically important questions about the processes linked to nutrient and metal recycling and carbon degradation in currently underexplored areas such as permeable costal sediments and deep-sea trenches. This unique observing instrument can transform our capacity for the urgently needed benthic biogeochemical analysis from a human-dependent, single-point and costly sampling to a technology-based long-term, high-quality and reliable approach for remote biogeochemical measurements. The SANDMAN system will be widely applicable from the coast to the deep sea and from pole to pole for marine monitoring and industrial applications. Thus it will pave the way to novel synoptic seafloor observations, providing data to support and inform stakeholders, such as government/non-governmental organisations, industries, scientists and the general public, on environmental health and potential hazards.
众所周知,海洋极其重要,因为它对气候、天气、全球粮食安全、公共卫生和经济都有影响;然而,目前海洋压力日益增大,造成了看不见的污染程度,并改变了全球重要的化学循环。从海岸到深海,海底大部分被松散聚集的沉积物覆盖。这些沉积物形成了地球上最大的生物反应器之一,在转化、储存和释放影响和控制生命的化合物时,对海洋环境的状况和健康发挥着至关重要的作用。例如,它们促进强效温室气体的产生,是氧气的主要汇,但也回收养分并保留污染物。这些生物地球化学反应导致沉积物上厘米到分米处的化合物浓度陡峭,可用于了解沉积物中进行的过程、其对全球生物地球化学循环的影响及其对海洋环境的影响。然而,使用传统的分析方法,这些梯度通常无法在空间和时间上得到正确解析,并且在沉积物收集过程中它们经常受到干扰;此外,这些测量成本高昂且耗时。在SANDMAN项目中,我将开发一种新仪器来测量重要生物地球化学化合物的梯度,例如营养物(硝酸盐、磷酸盐)、金属(铁)和碳酸盐系统参数(总碱度) )通过将尖端的片上实验室传感器与深海平台技术相结合,直接在海底沉积物(特别是孔隙水中)进行检测,该技术可以在海洋的极端环境中长时间运行。片上实验室传感器在自动化微流体平台上使用小型化标准实验室分析,由国家海洋学中心开发,最近才可用于长期应用。这些传感器非常适合直接测量沉积物中孔隙水的化学成分,因为它们非常节能,可以部署长达一年,并且仅使用很少的样本量,因此可以轻松解决沉积物中的陡峭梯度。在 SANDMAN 项目期间,我将领导针对沉积物条件的传感器硬件调整和调整,设计用于将孔隙水与沉积物固相分离的流体采样系统,以及将这些组件组合在独特的海底仪器中。该仪器的功能将首先在受控实验室环境中进行测试,然后在沿海测试站进行测试,然后将用于回答有关目前尚未开发的地区的营养物和金属回收以及碳降解相关过程的重要科学问题,例如可渗透的沿海沉积物和深海海沟。这种独特的观测仪器可以将我们迫切需要的海底生物地球化学分析的能力从依赖人类的、单点的、昂贵的采样转变为基于技术的长期、高质量和可靠的远程生物地球化学测量方法。 SANDMAN系统将广泛应用于从海岸到深海、从极到极的海洋监测和工业应用。因此,它将为新颖的海底天气观测铺平道路,为政府/非政府组织、行业、科学家和公众等利益相关者提供有关环境健康和潜在危害的支持和信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Lichtschlag其他文献

Anna Lichtschlag的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Lichtschlag', 18)}}的其他基金

A novel approach to measure nutrient fluxes in permeable sediments
测量可渗透沉积物中养分通量的新方法
  • 批准号:
    NE/X012654/1
  • 财政年份:
    2022
  • 资助金额:
    $ 164.44万
  • 项目类别:
    Research Grant
New capabilities for measuring organic matter degradation in the deepest oceans on Earth
测量地球最深海洋有机物降解的新功能
  • 批准号:
    NE/V008870/1
  • 财政年份:
    2020
  • 资助金额:
    $ 164.44万
  • 项目类别:
    Research Grant

相似国自然基金

基于场景理解的全景视频智能压缩关键技术研究
  • 批准号:
    62371310
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向长文本的机器阅读理解关键技术研究
  • 批准号:
    62306040
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于场景认知的可解释性机器阅读理解技术研究
  • 批准号:
    62376144
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于深度隐晦语义理解的网络文本内容审核技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于跨模态推理的机器阅读理解技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Using Momentary Measures to Understand Physical Activity Adoption and Maintenance among Pacific Islanders in the United States
使用临时措施了解美国太平洋岛民体育活动的采用和维持情况
  • 批准号:
    10737528
  • 财政年份:
    2023
  • 资助金额:
    $ 164.44万
  • 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
  • 批准号:
    10588092
  • 财政年份:
    2023
  • 资助金额:
    $ 164.44万
  • 项目类别:
Probing nano/bio interactions to understand and overcome biological barriers limiting nanomedicine
探索纳米/生物相互作用,以了解和克服限制纳米医学的生物障碍
  • 批准号:
    10623828
  • 财政年份:
    2023
  • 资助金额:
    $ 164.44万
  • 项目类别:
Characterizing the underlying population code to understand the functional organization of the hippocampus and the lateral hypothalamus
表征潜在的群体代码以了解海马和下丘脑外侧的功能组织
  • 批准号:
    10828039
  • 财政年份:
    2023
  • 资助金额:
    $ 164.44万
  • 项目类别:
Leveraging Longitudinal Data and Informatics Technology to Understand the Role of Bilingualism in Cognitive Resilience, Aging and Dementia
利用纵向数据和信息学技术了解双语在认知弹性、衰老和痴呆中的作用
  • 批准号:
    10583170
  • 财政年份:
    2023
  • 资助金额:
    $ 164.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了