A high-throughput-compatible animal-cell-free miniaturised thymic organoid model for thymus biology studies and in vitro T cell production.
一种高通量兼容的无动物细胞小型胸腺类器官模型,用于胸腺生物学研究和体外 T 细胞生产。
基本信息
- 批准号:NC/X002470/1
- 负责人:
- 金额:$ 25.52万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
T cells, a type of white blood cell, are an essential component of our immune system. They coordinate and effect our immune responses so we can control infections. Controlling different infections requires different types of immune response and our T cells allow us to make specific immune responses to specific infections. Recently, the power of T cells has been harnessed in medicine to make a new type of therapy called immunotherapy. Immunotherapies are still in their infancy, but have already been used successfully to treat some blood cancers.Within the body, T cells can only be made in a highly specialised organ, the thymus. The thymus instructs precursor cells in the blood to become T cells, then guides the developing T cells through a series of screening processes that ensure that only safe, functional T cells leave the thymus to become part of the immune system. These processes are needed because each T cell has on its surface a protein called T cell receptor (TCR). The TCR recognises and binds a small part of a specific protein (called a peptide) on the surface of other, non-T, cells. When T cells are developing, a very large number of different TCRs are made, that each recognise a peptide from a different protein. Each T cell has a different TCR. Some of the TCRs that are made can bind peptides from proteins from infectious agents such as viruses. Other TCRs can bind peptides from proteins in our own bodies. If these 'self-reactive' TCRs became part of our immune systems they would cause autoimmunity and to avoid this, they are screened out in the thymus. This screening is performed by special cells in the thymus called thymic epithelial cells, which can selectively remove or disarm 'self-reactive' T cells. The thymus is one of the first organs to degenerate in healthy individuals, and this contributes to a general decline in immune system function with age. This is one of the major reasons that as we get older we become more susceptible to new infections, such as flu and covid19. Thymus degeneration also causes problems for adult patients requiring a bone marrow transplant (BMT). This is because, after transplant, some patients take several years to make enough T cells again and these individuals remain vulnerable to infections until their immune system has been properly rebuilt. If their thymus function could be boosted, this time would be shortened.All of this together means there is a lot of interest in making T cells in the lab (eg. for immunotherapy) and in developing methods for boosting thymus function in patients (including BMT patients and the elderly), to increase their ability to fight new infections. However, at present, the only experimental models that mimic thymus function sufficiently well for these purposes rely on the use of cells obtained from the native thymus. Thymus tissue is scarce and hard to work with, which severely limits the numbers and size of studies that can currently be performed - for instance high throughput screening for new drugs relevant to thymus regeneration is not currently possible. We have recently shown that thymic epithelial cells can be made in the lab, starting from stem cells. We have also shown that we can grow miniaturized thymus organs (MTOs), in the lab, starting from native thymus tissue. We make these MTOs in a format that is suitable for low, medium and high throughput studies including drug screening and lab based T cell production. However, their use is still limited by tissue supply. This project will test whether we can combine these two approaches to make fully animal-cell-free MTOs from stem cells. If successful, this new animal-cell-free model system will significantly reduce the number of animals used in research. It will also enable a new era of thymus research in which much larger scale experiments can easily be performed, opening up this area to a wide range of laboratories including the pharmaceutical industry.
T细胞是一种白细胞,是我们免疫系统的重要组成部分。它们协调并影响我们的免疫反应,因此我们可以控制感染。控制不同的感染需要不同类型的免疫反应,我们的T细胞使我们能够对特定感染做出特定的免疫反应。最近,T细胞的力量已在医学上利用,以进行一种称为免疫疗法的新型疗法。免疫疗法仍处于起步阶段,但已经成功地用于治疗一些血液癌。胸腺指示血液中的前体细胞成为T细胞,然后通过一系列筛选过程引导发育中的T细胞,以确保只有安全的功能性T细胞才能使胸腺成为免疫系统的一部分。需要这些过程,因为每个T细胞在其表面上都有一种称为T细胞受体(TCR)的蛋白质。 TCR在其他非T细胞表面识别并结合了特定蛋白(称为肽)的一小部分。当T细胞发育时,制造了大量不同的TCR,每种TCR都识别出来自不同蛋白质的肽。每个T细胞都有不同的TCR。制造的一些TCR可以结合来自传染剂(例如病毒)的蛋白质的肽。其他TCR可以结合我们自己体内蛋白质的肽。如果这些“自我反应” TCR成为我们免疫系统的一部分,它们将引起自身免疫性并避免这种情况,则将其在胸腺中进行筛查。该筛选是由特殊细胞在胸腺中的特殊细胞进行的,称为胸腺上皮细胞,可以选择性地去除或解除“自反应性” T细胞。胸腺是健康个体中最早退化的器官之一,这会导致免疫系统随着年龄的增长的总体下降。这是随着年龄的增长,我们变得更容易受到新感染的影响,例如Flu和Covid19。胸腺变性还会引起需要骨髓移植(BMT)的成年患者的问题。这是因为,在移植后,一些患者需要几年的时间才能再次制作足够的T细胞,并且这些人仍然容易受到感染的影响,直到对其免疫系统进行了适当的重建为止。如果可以提高其胸腺功能,这次将缩短。所有这些都会加在一起,这意味着有很大的兴趣在实验室中制造T细胞(例如,用于免疫疗法),以及开发用于增强患者胸腺功能的方法(包括BMT患者和老年人),以增加对抗新感染的能力。但是,目前,对于这些目的而言,模仿胸腺功能足够好的唯一实验模型取决于从天然胸腺获得的细胞的使用。胸腺组织稀缺且难以作用,这严重限制了目前可以进行的研究的数量和大小 - 例如,目前不可能对与胸腺再生有关的新药物的高吞吐量筛查。我们最近表明,胸腺上皮细胞可以在实验室中从干细胞开始。我们还表明,从天然胸腺组织开始,可以在实验室中种植微型胸腺器官(MTO)。我们以适合低,中和高吞吐量研究(包括药物筛查和基于LAB的T细胞产生)的格式制作这些MTO。但是,它们的使用仍然受组织供应的限制。该项目将测试我们是否可以将这两种方法结合起来,从而从干细胞中制造完全无动物细胞的MTO。如果成功,这种新的无动物模型系统将显着减少研究中使用的动物数量。它还将使胸腺研究的新时代可以轻松地进行大规模的实验,从而向包括制药行业在内的各种实验室开放了这一领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clare Blackburn其他文献
Prevalence and social patterning of limiting long-term illness/disability in children and young people under the age of 20 years in 2001: UK census-based cross-sectional study.
2001 年 20 岁以下儿童和青少年中限制长期疾病/残疾的患病率和社会模式:英国基于人口普查的横断面研究。
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
N. Spencer;Clare Blackburn;Janet Read - 通讯作者:
Janet Read
Clare Blackburn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clare Blackburn', 18)}}的其他基金
Steroid receptors and transcriptional control of thymic rebound
类固醇受体和胸腺反弹的转录控制
- 批准号:
BB/H021183/1 - 财政年份:2010
- 资助金额:
$ 25.52万 - 项目类别:
Research Grant
Childhood limiting long-term illness/disabilty and socioeconomic disadvantage in the UK: exploring predictors, trends and causal directions
童年限制了英国的长期疾病/残疾和社会经济劣势:探索预测因素、趋势和因果方向
- 批准号:
ES/I007954/1 - 财政年份:2010
- 资助金额:
$ 25.52万 - 项目类别:
Research Grant
相似国自然基金
EAST高极向比压运行模式下芯部与边界兼容机制的数值模拟研究
- 批准号:12375228
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
兼容等温扩增的双CRISPR/Cas12方法体系构建及其多重精准监测肉及肉制品食用安全的应用研究
- 批准号:82373629
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
降温与低发射率双层结构可见光红外兼容隐身涂层的构筑及性能研究
- 批准号:52373090
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
数字金融对农村金融机构普惠目标与安全目标兼容性的影响与优化策略研究
- 批准号:72303056
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
智联网环境下人机兼容与协作模式对人机团队绩效的影响机制:替代与增强的双刃剑效应
- 批准号:72371223
- 批准年份:2023
- 资助金额:39.00 万元
- 项目类别:面上项目
相似海外基金
Identification of Small Molecules for Reactivation of p53 Cancer Mutants
鉴定用于 p53 癌症突变体再激活的小分子
- 批准号:
7617518 - 财政年份:2008
- 资助金额:
$ 25.52万 - 项目类别:
High Throughput Screening of Peptide Pharmaceuticals
多肽药物的高通量筛选
- 批准号:
7325917 - 财政年份:2007
- 资助金额:
$ 25.52万 - 项目类别:
Functionally Validated Lentiviral siRNA Libraries
功能验证的慢病毒 siRNA 文库
- 批准号:
7275220 - 财政年份:2007
- 资助金额:
$ 25.52万 - 项目类别: