Smart formulations for manufacturing of functional three-dimensional hierarchical structures
用于制造功能性三维分层结构的智能配方
基本信息
- 批准号:MR/V021117/1
- 负责人:
- 金额:$ 155.73万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research program bridges the gap between emerging functional materials and our ability to process these materials using advanced techniques such as additive manufacturing and directed assembly of macroscopic structures. Such bridging is of particular interest to those working in energy focused research as the UK has world-leading activity in materials discovery, but few of these new materials have been integrated into functional structures and devices. In the past few years, we have witnessed an enormous growth in additive manufacturing (AM) and other advanced processing techniques. Ink based 3D printing can pattern a range of materials to create printed batteries, supercapacitors, components of human organs and even shape morphing or 4D printed structures. Due to its relative simplicity, extrusion-based 3D printing (also known as Direct Ink Writing, DIW or Robocasting) is the most viable AM technique for introducing advanced functional materials into complex designs, and creating high resolution multi-material 3D structures combining dissimilar materials. The development of this technique is promising, however there remain fundamental scientific and technological challenges that need to be addressed from a multi and interdisciplinary perspective. We need to develop the ability to design and understand the bulk and local behaviour of yield stress fluids for DIW (those with solid-like behaviour at stresses below the yield point, beyond which they start to flow); and to advance the technology to create truly multi-material structures (those that combine different classes of materials). I will apply a multi and interdisciplinary approach to fundamental research on bespoke additives (responsive surfactants) to design complex (yield stress) fluids. I will develop new bulk and micro rheology methodologies to understand their behaviour and micro-structure to deliver a library of printable formulations to create designs with enhanced performance. This fundamental research will pave the way for the direct application of yield stress fluids in DIW to create complex multi-material structures. This research will be driven by, and evolve further, key applications in both healthcare and energy. For example, where architecture control across multiple scale lengths and interfaces is crucial, this research will enable combinatorial materials science, such as conjugated polymer photocatalysts (a new class of materials that has rapidly become highly researched worldwide) combined with semiconductors in an artificial photocatalytic system (Z-scheme). In healthcare, my research will advance 3D bioprinting through material development and standardisation, whilst at the same time creating complex degradable and non-degradable structures for specific applications within the field. For example, developing strategies for 3D printing polymer constructs with tuned properties to facilitate a range of material induced tissue regeneration.I will establish a new Complex Fluids group working at the boundaries between Materials Science, Materials Chemistry and Chemical Engineering. I will develop my leadership skills through a career development plan with a strong focus on Diversity, Equality, and Inclusion (EDI), and I will gradually transition to postdoctoral research supervision as the group grows. My mentors Professors Andy Cooper (AIC) and Steve Rannard (SR) will provide guidance on management of large research groups and establishing long-term relationships with Industry. I will forge new collaborations and partnerships locally (Dr Jude Curran, JC; and the Fluids Engineering Research Group Prof Robert J Poole, RJP and Dr David JC Dennis, DJCD); nationally (Dr Andy Gleadall, AG, Loughborough); and internationally (with collaborator Dr Patrick Spicer, PS, Sydney).
该研究项目弥合了新兴功能材料与我们使用增材制造和宏观结构定向组装等先进技术加工这些材料的能力之间的差距。这种桥接对于那些从事能源研究的人特别感兴趣,因为英国在材料发现方面处于世界领先地位,但这些新材料很少被集成到功能结构和设备中。在过去几年中,我们见证了增材制造 (AM) 和其他先进加工技术的巨大发展。基于墨水的 3D 打印可以对一系列材料进行图案化,以创建打印电池、超级电容器、人体器官组件,甚至塑造变形或 4D 打印结构。由于相对简单,基于挤出的 3D 打印(也称为直接墨水写入、DIW 或 Robocasting)是将先进功能材料引入复杂设计以及结合不同材料创建高分辨率多材料 3D 结构的最可行的增材制造技术。这项技术的发展前景广阔,但仍然存在需要从多学科和跨学科角度解决的基本科学和技术挑战。我们需要培养设计和理解 DIW 屈服应力流体的整体和局部行为的能力(那些在低于屈服点的应力下具有类似固体行为的流体,超过屈服点它们开始流动);并推进技术以创建真正的多材料结构(结合不同类别材料的结构)。我将采用多学科和跨学科的方法进行定制添加剂(响应性表面活性剂)的基础研究,以设计复杂(屈服应力)流体。我将开发新的本体和微观流变学方法,以了解它们的行为和微观结构,以提供可打印配方库,以创建具有增强性能的设计。这项基础研究将为直接应用屈服应力流体在 DIW 中创建复杂的多材料结构铺平道路。这项研究将由医疗保健和能源领域的关键应用推动并进一步发展。例如,在跨尺度长度和界面的结构控制至关重要的情况下,这项研究将使组合材料科学成为可能,例如共轭聚合物光催化剂(一种在全球范围内迅速得到高度研究的新型材料)与人工光催化系统中的半导体相结合(Z 方案)。在医疗保健领域,我的研究将通过材料开发和标准化推进 3D 生物打印,同时为该领域的特定应用创建复杂的可降解和不可降解结构。例如,开发具有调整特性的 3D 打印聚合物结构的策略,以促进一系列材料诱导的组织再生。我将建立一个新的复杂流体小组,致力于材料科学、材料化学和化学工程之间的边界工作。我将通过一个重点关注多元化、平等和包容性 (EDI) 的职业发展计划来培养我的领导技能,并且随着团队的发展,我将逐步过渡到博士后研究监督。我的导师 Andy Cooper 教授(AIC)和 Steve Rannard 教授(SR)将为大型研究小组的管理以及与工业界建立长期关系提供指导。我将在当地建立新的合作和伙伴关系(Jude Curran 博士,JC;以及流体工程研究小组 Robert J Poole 教授,RJP 和 David JC Dennis 博士,DJCD);全国范围内(安迪·格利德尔博士,AG,拉夫堡);以及国际上的合作者(与悉尼 PS 帕特里克·斯派塞博士合作)。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fourier-transform rheology and printability maps of complex fluids for three-dimensional printing
用于三维打印的复杂流体的傅里叶变换流变学和适印性图
- DOI:10.1063/5.0128658
- 发表时间:2023-01-01
- 期刊:
- 影响因子:4.6
- 作者:Esther García;R. Agrawal;B. Ling;D. Dennis
- 通讯作者:D. Dennis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Esther Garcia-Tunon其他文献
Esther Garcia-Tunon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于“组分疏水性-胶束配方-递药性能”关联性学习的中药复方混合胶束体系定制策略研究
- 批准号:82360776
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
智能车定位地图匹配方法中的交叉注意力机制研究
- 批准号:62373250
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
复杂时序约束下多水面船多AUV协同多点访问任务分配方法研究
- 批准号:62373255
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
动态谈判机制下投票博弈权力分配方案及应用研究
- 批准号:72301134
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于语义布局自适应优化的图像智能适配方法研究
- 批准号:62302356
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
High-throughput injectability screening of high concentration protein formulations by microfluidic quartz resonators
通过微流控石英谐振器对高浓度蛋白质制剂进行高通量可注射性筛选
- 批准号:
10760592 - 财政年份:2023
- 资助金额:
$ 155.73万 - 项目类别:
Genetic Biocontainment Switch to Improve the Safety of Drug Detoxifying Bacteria in Preventing Chemotherapy-induced Diarrhea
基因生物防护开关提高药物解毒细菌预防化疗引起的腹泻的安全性
- 批准号:
10698718 - 财政年份:2023
- 资助金额:
$ 155.73万 - 项目类别:
BIOLOGICAL TESTING FACILITY (BTF) - DEVELOPMENT OF CONTRACEPTIVE PRODUCTS INTENDED FOR NON-SYSTEMIC DELIVERY
生物测试设施 (BTF) - 开发用于非系统分娩的避孕产品
- 批准号:
10936055 - 财政年份:2023
- 资助金额:
$ 155.73万 - 项目类别:
Genetic Biocontainment Switch to Improve the Safety of Drug Detoxifying Bacteria in Preventing Chemotherapy-induced Diarrhea
基因生物防护开关提高药物解毒细菌预防化疗引起的腹泻的安全性
- 批准号:
10698718 - 财政年份:2023
- 资助金额:
$ 155.73万 - 项目类别:
PK/PD, METABOLIC, AND PRECLINICAL STUDIES - SRI INTERNATIONAL
PK/PD、代谢和临床前研究 - SRI INTERNATIONAL
- 批准号:
10833878 - 财政年份:2023
- 资助金额:
$ 155.73万 - 项目类别: