Freeform Silica Fibre Optics via Ultrafast Laser Manufacturing

通过超快激光制造的自由形状石英光纤

基本信息

  • 批准号:
    MR/X034615/1
  • 负责人:
  • 金额:
    $ 130.13万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

At a glance: Microstructured optical fibres are transforming science and technology in fields spanning telecommunications through to healthcare. Their unique offering of guiding properties continues to push the limits of established photonics and drive novel innovation and scientific discovery. However, a limit to this potential is approaching because many theoretically transformative fibres cannot be realised in practice due to manufacturing challenges. With this fellowship, I aim to unlock this unmet potential by developing a freeform optical fibre manufacturing process, which is unbound from conventional manufacturing constraints. The vast majority of optical fibre is produced for the telecommunications sector to satisfy exponentially rising data capacity needs. The type of fibre used in telecoms is typically conventional step-index fibre, comprised of a silica glass core surrounded by a lower-index doped-silica cladding. Solid fibre is inexpensive and guides with reasonably low-loss, but is fundamentally limited in performance by material absorption, scattering and high-dispersion amongst other factors.Over the past few decades, another type of optical fibre has emerged - microstructured optical fibre (MOF). MOF utilises a structured-material core-cladding in which light is guided through complex waveguiding mechanisms. Depending on the type, MOF can offer several advantages over conventional fibre including broad spectral transmission, low bend-loss, low latency and high-power delivery. Remarkably, certain MOFs guide light within a hollow region of the fibre. These so-called hollow-core fibres overcome problems faced by solid-core fibres such as material absorption, dispersion, optical damage and latency, as well as enabling an innovation-rich field of gas-filled sensors and light sources.MOF is manufactured by an approach known as stack-and-draw. Stack-and-draw is a two-step process: firstly, circular glass capillaries, rods and tubes are stacked laterally, often with added spacers, to form a scaled-up approximation of the fibre known as a preform. Secondly, the preform is drawn to fibre through a high-temperature furnace. The design of MOF developed so far has been heavily steered by the restrictive stacking process, e.g., hexagonally-packed Kagomé fibre and circle-tubular antiresonant fibre. Unfortunately, several types of MOF that have shown huge potential theoretically cannot be reasonably stacked, and so the vast applicability of MOF is beginning to plateau.To unlock this potential, we will develop a new preform manufacturing process capable of producing freeform fibre, i.e., fibre with arbitrarily structured cross-section, without compromising on fibre quality. In the proposed approach, short segments of the preform are precisely and arbitrarily machined using tailored laser-manufacturing methods. These segments are then bonded axially to form the preform which is drawn to fibre using traditional methods. Building upon a recent early feasibility demonstration, the fellowship will facilitate an overhaul of the laser-based approach to fabricating preforms and investigation of optimal glass bonding techniques. Amongst a trove of benefits, freeform fibre will bring drastically lower loss, increased stability, faster data transfer speeds and novel spectral guidance.The later stages of the fellowship will focus on developing fibre with unprecedented guiding performance and exploring applications of fibre with novel geometry. We aim to develop an industry-ready manufacturing method for freeform silica optical fibre, and further improve high-resolution glass macro-fabrication and advanced bonding and assembly capabilities. This work is expected to open up a new field of fibre optics research and nurture a team of dedicated researchers.
一目了然:微结构光纤正在将电信的科学和技术转变为医疗保健。他们独特的指导性能继续推动了已建立的光子学的极限,并推动了新颖的创新和科学发现。但是,这种潜力的限制正在接近,因为由于制造挑战,许多理论上在实践中无法实现许多理论上的变革性纤维。通过这项奖学金,我的目标是通过开发自由形式的光纤制造工艺来解锁这种未满足的潜力,这与常规制造限制无关。绝大多数光纤都是为电信部门生产的,以满足指数增长的数据容量需求。电信中使用的纤维类型通常是常规的台阶纤维,由二氧化硅玻璃芯组成,周围是较低点掺杂的二层甲板。固体纤维廉价且指南相当低,但从根本上受到材料滥用,散射和高分散的性能限制。在过去的几十年中,另一种类型的光纤出现了 - 微结构光纤(MOF)。 MOF利用结构化的核心层层,其中光通过复杂的波导机制引导。根据类型的不同,MOF可以比传统的纤维提供多个优点,包括纤维中空心区域内的宽MOF指导光。这些所谓的空心核纤维克服了固体纤维所面临的问题,例如物质滥用,分散,光学损坏和潜伏期,以及启用充满活力的传感器和光源的创新领域。MOF由一种称为堆栈和抽签的方法制造。堆叠和抽签是一个两步的过程:首先,圆形玻璃毛细管,杆和管横向堆叠,通常带有垫片,以形成纤维的缩放近似值,称为预成形。其次,通过高温炉将预成型吸引到纤维上。到目前为止,MOF的设计已被限制性的堆叠过程(例如六角形的Kagomé纤维和圆圈 - 管状抗抗氧纤维)大量蒸熟。不幸的是,在理论上表现出巨大潜力的几种类型的MOF无法合理地堆叠,因此MOF的巨大适用性开始高原。要解锁这种潜力,我们将开发一种能够生产自由形式的纤维,即具有任意结构化的横截面的纤维,而无需在光纤质量上易于构成的纤维。在提出的方法中,使用量身定制的激光制造方法精确,任意地加工了预成型的短段。然后将这些片段轴上粘合,以形成使用传统方法绘制为纤维的预形成。在最近的早期可行性演示的基础上,研究金将有助于对基于激光的方法进行制造和研究最佳玻璃粘合技术的研究。在一系列福利中,自由式纤维将使损失急剧下降,稳定性提高,数据传输速度和新颖的光谱指导。奖学金的后期阶段将集中于以前所未有的指导性能以及探索纤维的应用,并使用新颖的几何形状来开发纤维。我们旨在为自由形式的二氧化硅光纤开发一种可以行业的制造方法,并进一步改善高分辨率玻璃宏观制作以及先进的粘结和组装功能。预计这项工作将开辟一个新的光纤研究领域,并为一组专门的研究人员提供护理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Calum Ross其他文献

Using the WHO ASSIST to Assess Drug and Alcohol Misuse in the Acute Mental Health Setting to Guide Treatment Interventions
使用 WHO ASSIST 评估急性心理健康环境中的药物和酒精滥用情况,以指导治疗干预措施

Calum Ross的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

HDAC4介导SIRT1蛋白SUMO化在二氧化硅致系统性硬皮病皮肤纤维化中的作用及机制研究
  • 批准号:
    82373486
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于TCR免疫组库研究蛋白冠启动适应性免疫在纳米二氧化硅致肺纤维化中的作用与机制
  • 批准号:
    82204074
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
miR-494-3p靶向UBQLN1调控巨噬细胞激活在纳米二氧化硅致肺纤维化中的作用及机制研究
  • 批准号:
    82273658
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于TCR免疫组库研究蛋白冠启动适应性免疫在纳米二氧化硅致肺纤维化中的作用与机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
玄武岩纤维和纳米二氧化硅协同作用全再生混凝土增强机理及破坏模型
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Quantifying the effect of sediment microbial activity in facilitating silica sequestration during early diagenesis (QUALIFIED)
量化早期成岩过程中沉积物微生物活性对促进二氧化硅固存的影响(合格)
  • 批准号:
    2319429
  • 财政年份:
    2024
  • 资助金额:
    $ 130.13万
  • 项目类别:
    Standard Grant
Chemical Control of Silica Scaling in Geothermal Systems
地热系统中二氧化硅结垢的化学控制
  • 批准号:
    2884852
  • 财政年份:
    2023
  • 资助金额:
    $ 130.13万
  • 项目类别:
    Studentship
Silica Nanocapsule-Mediated Nonviral Delivery of CRISPR Base Editor mRNA and Allele Specific sgRNA for Gene Correction in Leber Congenital Amaurosis
二氧化硅纳米胶囊介导的 CRISPR 碱基编辑器 mRNA 和等位基因特异性 sgRNA 非病毒传递用于 Leber 先天性黑蒙的基因校正
  • 批准号:
    10668166
  • 财政年份:
    2023
  • 资助金额:
    $ 130.13万
  • 项目类别:
Photo-thermal carbon dioxide capture directly from the air using silica / carbon aerogel
使用二氧化硅/碳气凝胶直接从空气中捕获光热二氧化碳
  • 批准号:
    23KJ0898
  • 财政年份:
    2023
  • 资助金额:
    $ 130.13万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Preparation of crystalline porous silica using inorganic oxide molecules as templates
以无机氧化物分子为模板制备结晶多孔二氧化硅
  • 批准号:
    23KJ2037
  • 财政年份:
    2023
  • 资助金额:
    $ 130.13万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了