Development of barocaloric materials for next generation refrigerants
开发下一代制冷剂的压热材料
基本信息
- 批准号:MR/V026070/1
- 负责人:
- 金额:$ 145.02万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Hydrofluorocarbons (HFCs) have become the de facto alternative to chloroflurocarbons (CFCs), since CFC phasing out in 1994, and are used primarily in heating, ventilation and air-conditioning equipment (HVAC). The US and EU now seek to phase-down HFC use due to their own toxicity issues and damaging environmental impact. In addition to these noble reasons, the refrigeration industry currently accounts for 17 % of the world's electricity consumption; any increase in efficiency would therefore be welcomed in both an economic and environmental sense. Finding alternatives to HFCs has created a major technological and scientific challenge. Ideally, any new technology should be made from sustainable sources and offer increased efficiencies and environmental credentials over current practices. Recently, there has been a strong focus on developing solid state materials which demonstrate caloric effects, where refrigeration is caused by an external field which induces a large isothermal entropy change and large adiabatic (isolated system) temperature changes. The external field can take the form of a magnetic field (magnetocaloric), electric field (electrocaloric) or hydrostatic pressure (barocaloric). While, magneto- and electrocaloric effects require large magnetic or electric fields, which are reliant on rare-earth elements for their generation, the same does not apply to the generation of pressure. Thus, in principle, applications based on the barocaloric (BC) effect will have less limitations for commercial realisation.The potential energy savings through the adoption of BCs over current refrigeration systems has been calculated to be 1260 terawatt-hours. The BC effect in materials is unlocked via the application of external pressure to the material. This causes a structural transformation which is coupled with an increase in temperature, much like a when you stretch an elastic rubber band causing it to heat up. This process of a solid-solid phase transition can be cycled like the established vapour-compression technology to work as a refrigerant. To date few materials have been found to have the BC effect, and those that do vary wildly by type, ranging from metal alloys, to polymers and plastic crystals. This means that although there are few published BC materials, they must be more widespread than first thought.The scope of this fellowship is to use a combined computational and experimental approach to search, understand and control the BC response of polymorphic materials. I have experience of combining both computational and experimental methods in materials chemistry and have found that this complementarity is essential in order to fully understand structural changes as well as the energetics of those changes. The project will extend our library of solid-state materials built from our new understanding of how to maximise BC effects. Specifically, I will design materials to be able to tune their working temperatures, as industry requires a wide range of temperature-controlled environments. The ultimate goal is to compile a portfolio of materials which have BC responses at different temperatures which can be explored for commercial application as refrigerants and coolants at fixed temperatures. These materials will be non-toxic, easy to dispose of and more efficient than the status-quo of today's technology. The development of solid-state BC materials as refrigerants will:(1) Reduce the greenhouse gases emissions associated with the refrigeration industry.(2) Create solid-state materials which can be disposed/recycled more easily than current technologies based on gases/liquids.(3) Improve efficiency of the heat transfer, reducing refrigeration energy demands.(4) Improve the knowledge of design principles for controlling materials properties via phase changes which is applicable to many areas including pharmaceuticals, heat batteries and thermo/piezochromic materials.
自 1994 年逐步淘汰 CFC 以来,氢氟碳化合物 (HFC) 已成为事实上的氯氟碳化合物 (CFC) 替代品,主要用于供暖、通风和空调设备 (HVAC)。由于自身的毒性问题和破坏性的环境影响,美国和欧盟现在寻求逐步减少氢氟碳化合物的使用。除了这些崇高的原因之外,制冷行业目前占世界电力消耗的17%;因此,从经济和环境角度来看,任何效率的提高都会受到欢迎。寻找氢氟碳化合物的替代品已成为一项重大的技术和科学挑战。理想情况下,任何新技术都应该由可持续来源制成,并比当前实践提供更高的效率和环境认证。最近,人们强烈关注开发具有热量效应的固态材料,其中制冷是由外部场引起的,该外部场引起大的等温熵变和大的绝热(隔离系统)温度变化。外场可以采用磁场(磁热)、电场(电热)或静水压力(气压)的形式。虽然磁热效应和电热效应需要大的磁场或电场,其产生依赖于稀土元素,但这不适用于压力的产生。因此,原则上,基于压热 (BC) 效应的应用对商业实现的限制较小。据计算,与当前制冷系统相比,采用 BC 可以节省 1260 太瓦时的能源。通过对材料施加外部压力来释放材料中的BC效应。这会导致结构转变,并伴随温度升高,就像拉伸弹性橡皮筋导致其升温一样。这种固-固相变过程可以像已建立的蒸汽压缩技术一样循环,以用作制冷剂。迄今为止,很少有材料被发现具有BC效应,而且那些具有BC效应的材料因类型而异,从金属合金到聚合物和塑料晶体。这意味着虽然发表的BC材料很少,但它们一定比最初想象的更广泛。该研究金的范围是使用计算和实验相结合的方法来搜索、理解和控制多晶型材料的BC响应。我拥有将材料化学中的计算方法和实验方法相结合的经验,并发现这种互补性对于充分理解结构变化以及这些变化的能量学至关重要。该项目将扩展我们的固态材料库,该库是根据我们对如何最大化 BC 效应的新理解而建立的。具体来说,我将设计能够调整其工作温度的材料,因为工业需要广泛的温度控制环境。最终目标是编制在不同温度下具有BC响应的材料组合,这些材料可以探索作为固定温度下的制冷剂和冷却剂的商业应用。这些材料无毒、易于处理并且比当今技术的现状更加高效。开发固态BC材料作为制冷剂将:(1)减少与制冷行业相关的温室气体排放。(2)创造比现有基于气体/液体的技术更容易处理/回收的固态材料(3)提高传热效率,减少制冷能源需求。(4)提高通过相变控制材料性能的设计原理知识,该知识适用于制药、热电池和热/压致变色材料等许多领域。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tuning the High-Pressure Phase Behaviour of Highly Compressible Zeolitic Imidazolate Frameworks: From Discontinuous to Continuous Pore Closure by Linker Substitution.
- DOI:10.1002/anie.202117565
- 发表时间:2022-05-16
- 期刊:
- 影响因子:16.6
- 作者:Song, Jianbo;Pallach, Roman;Frentzel-Beyme, Louis;Kolodzeiski, Pascal;Kieslich, Gregor;Vervoorts, Pia;Hobday, Claire L.;Henke, Sebastian
- 通讯作者:Henke, Sebastian
Modelling and advanced characterization of framework materials.
- DOI:10.1038/s42004-023-01071-5
- 发表时间:2023-12-18
- 期刊:
- 影响因子:5.9
- 作者:Coudert, Francois-Xavier;Hobday, Claire L.;Horike, Satoshi;van der Veen, Monique A.
- 通讯作者:van der Veen, Monique A.
High-Pressure Structural Behavior of para -Xylene
对二甲苯的高压结构行为
- DOI:10.1021/acs.cgd.2c00249
- 发表时间:2022
- 期刊:
- 影响因子:3.8
- 作者:Konar S
- 通讯作者:Konar S
Pressure-induced postsynthetic cluster anion substitution in a MIL-53 topology scandium metal-organic framework.
- DOI:10.1039/d3sc00904a
- 发表时间:2023-07-19
- 期刊:
- 影响因子:8.4
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claire Hobday其他文献
Claire Hobday的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Manipulating Barocaloric Effects in Two-Dimensional Perovskites
职业:操纵二维钙钛矿中的气压效应
- 批准号:
2238113 - 财政年份:2023
- 资助金额:
$ 145.02万 - 项目类别:
Continuing Grant
Utilizing Spin Crossover Complexes for Barocaloric Cooling
利用自旋交叉复合物进行气压冷却
- 批准号:
568256-2022 - 财政年份:2022
- 资助金额:
$ 145.02万 - 项目类别:
Postdoctoral Fellowships
Barocaloric materials for zero-carbon heat pumps
用于零碳热泵的气压热材料
- 批准号:
EP/V042262/1 - 财政年份:2022
- 资助金额:
$ 145.02万 - 项目类别:
Research Grant
Feasibility of using barocaloric cooling for energy efficiency gains and zero greenhouse warming impact in commercial food and drink refrigeration
在商业食品和饮料制冷中使用气压冷却来提高能源效率和零温室效应影响的可行性
- 批准号:
35494 - 财政年份:2019
- 资助金额:
$ 145.02万 - 项目类别:
Collaborative R&D