Development of barocaloric materials for next generation refrigerants

开发下一代制冷剂的压热材料

基本信息

  • 批准号:
    MR/V026070/1
  • 负责人:
  • 金额:
    $ 145.02万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Hydrofluorocarbons (HFCs) have become the de facto alternative to chloroflurocarbons (CFCs), since CFC phasing out in 1994, and are used primarily in heating, ventilation and air-conditioning equipment (HVAC). The US and EU now seek to phase-down HFC use due to their own toxicity issues and damaging environmental impact. In addition to these noble reasons, the refrigeration industry currently accounts for 17 % of the world's electricity consumption; any increase in efficiency would therefore be welcomed in both an economic and environmental sense. Finding alternatives to HFCs has created a major technological and scientific challenge. Ideally, any new technology should be made from sustainable sources and offer increased efficiencies and environmental credentials over current practices. Recently, there has been a strong focus on developing solid state materials which demonstrate caloric effects, where refrigeration is caused by an external field which induces a large isothermal entropy change and large adiabatic (isolated system) temperature changes. The external field can take the form of a magnetic field (magnetocaloric), electric field (electrocaloric) or hydrostatic pressure (barocaloric). While, magneto- and electrocaloric effects require large magnetic or electric fields, which are reliant on rare-earth elements for their generation, the same does not apply to the generation of pressure. Thus, in principle, applications based on the barocaloric (BC) effect will have less limitations for commercial realisation.The potential energy savings through the adoption of BCs over current refrigeration systems has been calculated to be 1260 terawatt-hours. The BC effect in materials is unlocked via the application of external pressure to the material. This causes a structural transformation which is coupled with an increase in temperature, much like a when you stretch an elastic rubber band causing it to heat up. This process of a solid-solid phase transition can be cycled like the established vapour-compression technology to work as a refrigerant. To date few materials have been found to have the BC effect, and those that do vary wildly by type, ranging from metal alloys, to polymers and plastic crystals. This means that although there are few published BC materials, they must be more widespread than first thought.The scope of this fellowship is to use a combined computational and experimental approach to search, understand and control the BC response of polymorphic materials. I have experience of combining both computational and experimental methods in materials chemistry and have found that this complementarity is essential in order to fully understand structural changes as well as the energetics of those changes. The project will extend our library of solid-state materials built from our new understanding of how to maximise BC effects. Specifically, I will design materials to be able to tune their working temperatures, as industry requires a wide range of temperature-controlled environments. The ultimate goal is to compile a portfolio of materials which have BC responses at different temperatures which can be explored for commercial application as refrigerants and coolants at fixed temperatures. These materials will be non-toxic, easy to dispose of and more efficient than the status-quo of today's technology. The development of solid-state BC materials as refrigerants will:(1) Reduce the greenhouse gases emissions associated with the refrigeration industry.(2) Create solid-state materials which can be disposed/recycled more easily than current technologies based on gases/liquids.(3) Improve efficiency of the heat transfer, reducing refrigeration energy demands.(4) Improve the knowledge of design principles for controlling materials properties via phase changes which is applicable to many areas including pharmaceuticals, heat batteries and thermo/piezochromic materials.
自CFC在1994年逐步淘汰以来,氢氟化合物(HFC)已成为事实上的替代品(CFC),主要用于加热,通风和空调设备(HVAC)。由于其自身的毒性问题和损害环境影响,美国和欧盟现在寻求降低HFC的使用。除了这些崇高的原因外,制冷行业目前占世界电力消费的17%。因此,从经济和环境意义上讲,效率的任何提高都将受到欢迎。找到HFC的替代方案已引起了一项重大的技术和科学挑战。理想情况下,任何新技术都应由可持续来源制定,并为当前实践提供提高的效率和环境证书。最近,人们非常重视开发表现出热量效应的固态材料,在该材料中,制冷是由外部田间引起的,该场外场引起了较大的等温熵变化和大型绝热(隔离系统)温度的变化。外场可以采用磁场(磁场),电场(电气)或静水压力(低空自身)的形式。而磁电气和电气效应需要大的磁场或电场,这些磁场依赖于稀土元素的产生,但同样的磁场不适用于产生的压力。因此,原则上,基于低位时代(BC)效应的应用将对商业实现的局限性较小。通过在当前的制冷系统上采用BC通过BCS节省的势能为1260 Terawatt-Hours。材料中的BC效应通过将外部压力施加到材料上解锁。这会导致结构转化,该结构转换与温度的升高相结合,就像拉伸弹性橡皮筋导致其加热时一样。固体相变的过程可以像建立的蒸气压缩技术一样循环,以作为制冷剂。迄今为止,很少有材料具有BC效应,而从金属合金到聚合物和塑料晶体的类型则构成了巨大变化。这意味着,尽管卑诗省很少出版的材料,但它们必须比首先思考更广泛。该团契的范围是使用一种组合的计算和实验方法来搜索,理解和控制多态性材料的BC响应。我有结合材料化学中的计算和实验方法的经验,发现这种互补性对于充分理解结构变化以及这些变化的能量至关重要。该项目将扩大我们从对如何最大化BC效应的新理解中建立的固态材料库。具体来说,我将设计材料以调整其工作温度,因为行业需要广泛的温度控制环境。最终目标是编译在不同温度下具有BC响应的材料组合,可以在固定温度下以制冷剂和冷却剂的形式探索商业应用。这些材料将比当今技术的现状无毒,易于处置且更有效。固态BC材料作为制冷剂的开发将:(1)减少与制冷行业相关的温室气体排放。(2)创建可以基于气体/液体基于气体/液体的当前技术更容易被处置/回收的固态材料。(3)(3)在热传递的效率上改善了材料的特性,该材料通过速度的需求改善(4),该材料的特性是通过速率进行的。包括药品,热电池和热/压电材料。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tuning the High-Pressure Phase Behaviour of Highly Compressible Zeolitic Imidazolate Frameworks: From Discontinuous to Continuous Pore Closure by Linker Substitution.
  • DOI:
    10.1002/anie.202117565
  • 发表时间:
    2022-05-16
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Song, Jianbo;Pallach, Roman;Frentzel-Beyme, Louis;Kolodzeiski, Pascal;Kieslich, Gregor;Vervoorts, Pia;Hobday, Claire L.;Henke, Sebastian
  • 通讯作者:
    Henke, Sebastian
Modelling and advanced characterization of framework materials.
  • DOI:
    10.1038/s42004-023-01071-5
  • 发表时间:
    2023-12-18
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Coudert, Francois-Xavier;Hobday, Claire L.;Horike, Satoshi;van der Veen, Monique A.
  • 通讯作者:
    van der Veen, Monique A.
High-Pressure Structural Behavior of para -Xylene
对二甲苯的高压结构行为
  • DOI:
    10.1021/acs.cgd.2c00249
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Konar S
  • 通讯作者:
    Konar S
Pressure-induced postsynthetic cluster anion substitution in a MIL-53 topology scandium metal-organic framework.
  • DOI:
    10.1039/d3sc00904a
  • 发表时间:
    2023-07-19
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Claire Hobday其他文献

Claire Hobday的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Manipulating Barocaloric Effects in Two-Dimensional Perovskites
职业:操纵二维钙钛矿中的气压效应
  • 批准号:
    2238113
  • 财政年份:
    2023
  • 资助金额:
    $ 145.02万
  • 项目类别:
    Continuing Grant
Modelling of barocaloric materials
气压材料的建模
  • 批准号:
    2738209
  • 财政年份:
    2022
  • 资助金额:
    $ 145.02万
  • 项目类别:
    Studentship
Utilizing Spin Crossover Complexes for Barocaloric Cooling
利用自旋交叉复合物进行气压冷却
  • 批准号:
    568256-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 145.02万
  • 项目类别:
    Postdoctoral Fellowships
Barocaloric materials for zero-carbon heat pumps
用于零碳热泵的气压热材料
  • 批准号:
    EP/V042262/1
  • 财政年份:
    2022
  • 资助金额:
    $ 145.02万
  • 项目类别:
    Research Grant
Feasibility of using barocaloric cooling for energy efficiency gains and zero greenhouse warming impact in commercial food and drink refrigeration
在商业食品和饮料制冷中使用气压冷却来提高能源效率和零温室效应影响的可行性
  • 批准号:
    35494
  • 财政年份:
    2019
  • 资助金额:
    $ 145.02万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了