Finding and fixing gas leaks: Using urban waterways to halt the global rise in methane emissions

查找并修复气体泄漏:利用城市水道阻止全球甲烷排放量的上升

基本信息

  • 批准号:
    MR/V025082/1
  • 负责人:
  • 金额:
    $ 157.01万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Methane is a greenhouse gas with 86 times the global warming potential of carbon dioxide over a 20-year period - the timescale in which global action to reduce carbon emissions and limit catastrophic climate change is needed. Atmospheric methane concentrations have increased by 0.5% per year since 2010, yet to achieve the Paris Climate target limiting global warming to 1.5 degrees Celsius it needs to decrease by 0.9% per year between 2010 and 2050. Roughly half the methane currently in the atmosphere comes from human activity, so addressing human-driven methane emissions is crucial to achieving climate targets.This fellowship will allow me to build a team to help address the global rise in methane emissions. This will be achieved via three work packages (WPs) that deliver technical solutions to key challenges standing in the way of a reduction in human-driven methane emissions. These technical solutions will be developed and applied in urban waterways (city rivers and canals) because these systems can act as conduits for human-driven methane emissions to the atmosphere. Urban waterways can receive a wide range of methane inputs, such as leaky gas and wastewater pipes, and will come under increasing human pressure with more than 5 billion people predicted to live in cities by 2030.WP1. How do we accurately measure methane emissions? Methane emissions can vary substantially over short spatial (meters) and temporal (hours) scales. The fellowship will deliver instrumentation that can measure methane emissions at spatial and temporal resolutions far surpassing current capabilities, and use it to quantify the contribution of urban waterways to city-scale methane inventories across globally representative locations (UK, Europe, USA, China, Bangladesh).WP2. Where do methane emissions originate? Methane emissions can be driven directly by human activity, such as leaky pipes, or indirectly by increasing the production of methane in waterways. The techniques used in this fellowship will distinguish natural from human-driven methane by measuring methane/ethane ratios and methane stable (C-13) isotopes at the same high resolutions as in WP1. This will be coupled with targeted methane radio- (C-14) and stable (H-2) isotopes, and geochemical and microbial characterisation of urban waterways. Methane emissions and origin will be mapped out for entire urban waterway networks to determine the key controls of methane release to the atmosphere. WP3. How do we reduce methane emissions? The mapping of controls on methane release, coupled to detailed microbial characterisation through in-situ and lab incubations, will be used to deliver techniques to a) detect methane leaks, even ones hidden underground, and b) prevent the emission of human-driven methane to the atmosphere by developing bioremediation strategies. For example, how do urban waterway microbes respond to methane leaks, and can we utilise these microbes to rapidly oxidise leaking methane before it reaches the atmosphere?With a wide range of potential human-driven methane sources, urban waterways provide a strong testbed for the proposed techniques. These techniques will be delivered as a toolbox for research, industry and policy end-users. The toolbox will be developed in collaboration with project partners such as Shell and the UK Environment Agency via a research and industry-led steering committee (see letters of support). This fellowship provides the flexibility, training and time required to deliver a user-focused toolbox containing:1) instrumentation to capture the spatial and temporal variability of methane emissions2) a freely available reference database of methane isotopes and associated geochemical and microbial signatures to identify methane origins3) tangible solutions to detect and reduce human-driven methane emissions to the atmosphere, developed in collaboration with industry and policy focused partners.
甲烷是一种温室气体,其 20 年全球变暖潜力是二氧化碳的 86 倍——在这段时间内,全球需要采取行动减少碳排放并限制灾难性的气候变化。自 2010 年以来,大气中的甲烷浓度每年增加 0.5%,但要实现将全球变暖限制在 1.5 摄氏度的巴黎气候目标,需要在 2010 年至 2050 年间每年减少 0.9%。目前大气中的甲烷大约有一半来自来自人类活动,因此解决人类驱动的甲烷排放对于实现气候目标至关重要。这项奖学金将使我能够建立一个团队来帮助解决全球甲烷排放量的上升问题。这将通过三个工作包(WP)来实现,这些工作包为减少人类驱动的甲烷排放所面临的关键挑战提供技术解决方案。这些技术解决方案将在城市水道(城市河流和运河)中开发和应用,因为这些系统可以充当人类驱动的甲烷排放到大气中的管道。城市水道可能会接收各种甲烷输入,例如泄漏的燃气和废水管道,并且预计到 2030 年将有超过 50 亿人居住在城市,并将承受越来越大的人类压力。WP1。我们如何准确测量甲烷排放量?甲烷排放量在短空间(米)和时间(小时)尺度上可能存在很大差异。该奖学金将提供能够以远远超过当前能力的空间和时间分辨率测量甲烷排放的仪器,并用它来量化城市水道对全球代表性地点(英国、欧洲、美国、中国、孟加拉国)城市规模甲烷库存的贡献).WP2。甲烷排放源自何处?甲烷排放可能是由人类活动(例如管道泄漏)直接驱动的,也可能是由水道中甲烷产量增加间接驱动的。该奖学金使用的技术将通过以与 WP1 相同的高分辨率测量甲烷/乙烷比率和甲烷稳定 (C-13) 同位素来区分自然甲烷和人类驱动的甲烷。这将与目标甲烷放射性(C-14)和稳定(H-2)同位素以及城市水道的地球化学和微生物特征相​​结合。将为整个城市水道网络绘制甲烷排放和来源,以确定甲烷向大气排放的关键控制措施。 WP3。我们如何减少甲烷排放?甲烷释放控制图,加上通过现场和实验室孵化进行的详细微生物特征分析,将用于提供以下技术:a) 检测甲烷泄漏,甚至隐藏在地下的甲烷泄漏;b) 防止人类驱动的甲烷排放通过制定生物修复策略将其排放到大气中。例如,城市水道微生物如何应对甲烷泄漏,我们能否利用这些微生物在泄漏的甲烷到达大气之前将其快速氧化?由于人类驱动的甲烷来源广泛,城市水道为甲烷泄漏提供了强大的试验平台。提出的技术。这些技术将作为工具箱提供给研究、行业和政策最终用户。该工具箱将通过研究和行业主导的指导委员会与壳牌和英国环境局等项目合作伙伴合作开发(参见支持信)。该奖学金提供了交付以用户为中心的工具箱所需的灵活性、培训和时间,其中包含:1)用于捕获甲烷排放的空间和时间变化的仪器2)免费提供的甲烷同位素参考数据库以及用于识别甲烷的相关地球化学和微生物特征origins3) 与行业和政策重点合作伙伴合作开发的切实可行的解决方案,用于检测和减少人为向大气中排放的甲烷。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Methanotrophic potential of Dutch canal wall biofilms is driven by Methylomonadaceae.
  • DOI:
    10.1093/femsec/fiad110
  • 发表时间:
    2023-09-19
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
  • 通讯作者:
Peatland pools are tightly coupled to the contemporary carbon cycle.
  • DOI:
    10.1111/gcb.16999
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    11.6
  • 作者:
    J. Dean;M. Billett;T. E. Turner;M. Garnett;Roxane Andersen;Rebecca M McKenzie;K. Dinsmore;A. J. Baird;P. Chapman;Joseph Holden
  • 通讯作者:
    J. Dean;M. Billett;T. E. Turner;M. Garnett;Roxane Andersen;Rebecca M McKenzie;K. Dinsmore;A. J. Baird;P. Chapman;Joseph Holden
Future directions for river carbon biogeochemistry observations
河流碳生物地球化学观测的未来方向
  • DOI:
    10.1038/s44221-024-00207-8
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dean J
  • 通讯作者:
    Dean J
Target methane
目标甲烷
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Dean其他文献

Tackling Household Decision Making Inefficiencies for Young Women’s Skills Investment in Pakistan
解决巴基斯坦年轻女性技能投资家庭决策效率低下的问题
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hamna Ahmed;Zunia Tirmazee;Rebecca Wu;Emma Zhang;Christina Brown;Eric Budish;Fiona Burlig;Franco Calle;Joshua Dean;R. Glennerster;Chuhan Guo;Navid Hamid;Xianglong Kong;Matthew Notodowidigdo
  • 通讯作者:
    Matthew Notodowidigdo
Above us only sky
我们的头上只有天空
  • DOI:
    10.1038/s43247-021-00245-0
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Joshua Dean;A. Kiendler‐Scharr;N. Mengis;Y. Rudich;K. Schepanski;R. Zimmermann
  • 通讯作者:
    R. Zimmermann

Joshua Dean的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua Dean', 18)}}的其他基金

NI: CONFLUENCE - Disentangling the role of rivers as greenhouse gas conduits
NI:汇流 - 阐明河流作为温室气体管道的作用
  • 批准号:
    NE/V009001/2
  • 财政年份:
    2022
  • 资助金额:
    $ 157.01万
  • 项目类别:
    Research Grant
Topic B: The Enigma of the Soil Hydrogen Sink Variability [ELGAR]
主题 B:土壤氢汇变异之谜 [ELGAR]
  • 批准号:
    NE/X013405/1
  • 财政年份:
    2022
  • 资助金额:
    $ 157.01万
  • 项目类别:
    Research Grant
NI: CONFLUENCE - Disentangling the role of rivers as greenhouse gas conduits
NI:汇流 - 阐明河流作为温室气体管道的作用
  • 批准号:
    NE/V009001/1
  • 财政年份:
    2020
  • 资助金额:
    $ 157.01万
  • 项目类别:
    Research Grant

相似国自然基金

深度不确定影响下沿海地区复合极端洪水风险形成机制与风险适应研究
  • 批准号:
    42371088
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
从三维基因组角度鉴定影响肉鸡体脂沉积的关键基因组变异并解析其调控机制
  • 批准号:
    32372868
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
整合全基因组关联分析和转录组数据鉴定影响绵羊尾长性状的新基因
  • 批准号:
    32360823
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
风电虚拟惯性支撑对暂态功角稳定影响机理及层次化协同控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
降雨对基坑变形和稳定影响及致灾机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Electrochemical acceleration of ammonium biosynthesis from nitrogen gas
电化学加速氮气生物合成铵
  • 批准号:
    20F20105
  • 财政年份:
    2020
  • 资助金额:
    $ 157.01万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Structural variation of the nitrogen-fixing heterocyst: Addressing the role of gas permeability in evolutionary divergence
固氮异形体的结构变异:解决气体渗透性在进化分歧中的作用
  • 批准号:
    1147195
  • 财政年份:
    2012
  • 资助金额:
    $ 157.01万
  • 项目类别:
    Standard Grant
Nano-arrangement analysis of cellulase complex and its application to methanol production by fixing carbonic acid.
纤维素酶复合物的纳米排列分析及其在固定碳酸生产甲醇中的应用
  • 批准号:
    14206038
  • 财政年份:
    2002
  • 资助金额:
    $ 157.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Analysis and management of environmental loads caused by large scale disturbance in peatland of Southeast Asia
东南亚泥炭地大规模扰动造成的环境负荷分析与治理
  • 批准号:
    13375011
  • 财政年份:
    2001
  • 资助金额:
    $ 157.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
CORE B- HEART BIOLOGY CORE
核心 B- 心脏生物学核心
  • 批准号:
    7526857
  • 财政年份:
  • 资助金额:
    $ 157.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了