4DVOLC: Magma storage and ascent in volcanic systems via time resolved HPHT x-ray tomographic experiments and numerical modelling of eruption dynamics
4DVOLC:通过时间分辨 HPHT X 射线断层扫描实验和喷发动力学数值模拟,火山系统中的岩浆储存和上升
基本信息
- 批准号:MR/V023985/1
- 负责人:
- 金额:$ 194.55万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Volcanoes are amongst the most powerful and dangerous natural manifestations on Earth. Eight million people live in the shadow of volcanoes. Bettering our current understanding of volcano system behaviour to improve hazard assessment and risk mitigation is therefore imperative for scientists and governmental authorities operating in active volcanic areas. The primary goal of this project is to create an empirically constrained quantitative description of magma vesiculation and crystallisation kinetics and to apply this to address key volcanological questions through a numerical model framework and observations of the natural system. To this aim, we will combine in situ 4D (time+space) synchrotron x-ray microtomographic experiments to visualise and quantify magma crystallisation and degassing at HPHT with state-of-the-art numerical modelling and observations of natural volcanic textures. This approach will revolutionise experimental petrology and volcanology and will create a paradigm shift in the ability to understand, quantify and forecast volcanic eruptions and their impact on society and climate. To achieve this goal, we plan to exploit the potential of a new x-ray transparent IHPV (internally heated pressure vessel), which is deployed in the framework of another grant, to address fundamental questions that have puzzled Earth scientists for decades: 1) what is the relationship between magma dynamics and transport at depth and the volcanic activity and signals that we watch at the surface? 2) how and why do transitions between explosive and effusive volcanic activity occur and how can we model and predict them? By exploiting the new IHPV, we will perform studies on magma vesiculation and crystallisation kinetics, which play a key role in such transitions, by applying in situ 4D x-ray computed microtomography imaging to magmas of different compositions, volatile and crystal content. The results of the 4D experiments on magma kinetics at the micro scale will be used to derive improved empirical laws of magma viscosity under evolving crystallisation and vesiculation conditions as a function of cooling and decompression rates, and then will be implemented with these latter into a large scale multiphase, multicomponent numerical model of the physical behaviour of magma in volcanic conduits. The model will be developed at the University of Manchester in collaboration with colleagues from the US. The overall findings will be then validated by, and compared with, observations and measurements from well studied natural volcanic eruptions in Italy and Reunion, which both host hazardous, inhabited active volcanic areas. In the event of an eruption, which is likely to happen on Reunion within the time frame of the project, the model will be used in collaboration with the local volcano observatory to constrain eruption forecasting and evolution in real time. With this holistic approach, the research project will generate an exceptionally reliable tool for investigating and quantifying volcano dynamics in both quiescent and eruptive conditions. Such tool will be used by volcano observatories/stakeholders before and during eruption breakout for tracking changes in volcano surface phenomena (i.e., deformation) and eruptive style and make predictions on the eruption evolution. The multidisciplinary, ground-breaking, scientific nature of the project will have a very strong positive impact on the future of volcanology in the UK, and will increase the UK potential over worldwide research. Ultimately, by exploiting the full potential of the new experimental apparatus, the project will produce a key experimental resource in the UK for future, novel investigations involving scientists from different areas of expertise within natural sciences and engineering.
火山是地球上最强大和最危险的自然表现之一。有800万人生活在火山的阴影下。因此,对于在活跃火山区运营的科学家和政府当局,必须提高我们对火山系统行为以改善危害评估和减轻风险的理解,以改善危害评估和降低风险。该项目的主要目的是对岩浆囊泡和结晶动力学进行经验约束的定量描述,并将其应用于通过数值模型框架和自然系统的观察来解决关键的火山学问题。为此,我们将结合原位4D(时间+空间)同步X射线显微镜实验,以可视化和量化HPHT的岩浆结晶和脱气与最新的数值建模和天然火山纹理的观测。这种方法将彻底改变实验性岩石学和火山学,并将在理解,量化和预测火山喷发及其对社会和气候的影响的能力上发生范式转变。为了实现这一目标,我们计划利用新的X射线透明IHPV(内部加热压力容器)的潜力,该X射线透明的框架是在另一项赠款的框架中部署的,以解决数十年来困惑地球科学家的基本问题:1)1)在深度和火山活动和信号的岩浆动力学和信号之间的关系是什么? 2)如何以及为什么在爆炸性和激烈的火山活动之间发生过渡,以及我们如何对它们进行建模和预测?通过利用新的IHPV,我们将通过将原位4D X射线计算的微传输成像应用于不同组成,伏挥发性和晶体含量的岩浆,对岩浆囊泡和结晶动力学进行研究,在此类过渡中起关键作用。 The results of the 4D experiments on magma kinetics at the micro scale will be used to derive improved empirical laws of magma viscosity under evolving crystallisation and vesiculation conditions as a function of cooling and decompression rates, and then will be implemented with these latter into a large scale multiphase, multicomponent numerical model of the physical behaviour of magma in volcanic conduits.该模型将在曼彻斯特大学与美国的同事合作开发。然后,总体发现将通过意大利和团圆研究经过良好的自然火山喷发的观测和测量来证实,并进行比较,这两者都有危险,居住的活跃火山区。如果发生喷发,可能会在项目的时间范围内聚会上发生,该模型将与当地火山天文台合作使用,以实时限制喷发预测和进化。通过这种整体方法,该研究项目将生成一个非常可靠的工具,用于调查和量化静态和喷发条件下的火山动力学。火山天文台/利益相关者将在喷发突破之前和期间使用这种工具,以跟踪火山表面现象的变化(即变形)和喷发样式,并对喷发演变进行预测。该项目的多学科,开创性,科学性质将对英国的火山学的未来产生非常强烈的积极影响,并将提高英国在全球研究中的潜力。最终,通过利用新的实验设备的全部潜力,该项目将在英国生产一个重要的实验资源,以供未来,涉及来自自然科学和工程领域不同专业知识领域的科学家的新型研究。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phase equilibrium experiments and thermodynamic simulations to constrain the pre-eruptive conditions of the 2021 Tajogaite eruption (Cumbre Vieja volcano, La Palma, Canary Islands)
- DOI:10.1016/j.jvolgeores.2023.107901
- 发表时间:2023-09
- 期刊:
- 影响因子:2.9
- 作者:A. Fabbrizio;Emily C. Bamber;Eleni Michailidou;Jorge E. Romero;F. Arzilli;B. Bonechi;M. Polacci;Mike Burton
- 通讯作者:A. Fabbrizio;Emily C. Bamber;Eleni Michailidou;Jorge E. Romero;F. Arzilli;B. Bonechi;M. Polacci;Mike Burton
Outgassing behaviour during highly explosive basaltic eruptions
- DOI:10.1038/s43247-023-01182-w
- 发表时间:2024-01-02
- 期刊:
- 影响因子:7.9
- 作者:Bamber,Emily C.;La Spina,Giuseppe;Burton,Mike R.
- 通讯作者:Burton,Mike R.
Quantifying dendritic crystallization in hydrous basaltic magmas through 4D experiments with in situ view: implications for magma mobility within the Earth’s crust
通过原位视图的 4D 实验量化含水玄武岩浆中的树枝状结晶:对地壳内岩浆流动性的影响
- DOI:10.5194/egusphere-egu24-2569
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Arzilli F
- 通讯作者:Arzilli F
Numerical modelling of sudden eruptive style transitions at basaltic volcanoes
玄武岩火山突然喷发风格转变的数值模拟
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Biagioli E
- 通讯作者:Biagioli E
Novel insights into dynamics and timescales of volcanic processes from magma storage at deep crustal levels to eruption: the contribution of synchrotron X-ray diffraction, radiography and computed microtomography
对从地壳深处岩浆储存到喷发的火山过程动力学和时间尺度的新见解:同步加速器 X 射线衍射、射线照相和计算机显微断层扫描的贡献
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Bonechi B
- 通讯作者:Bonechi B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margherita Polacci其他文献
The role of syn-eruptive vesiculation on explosive basaltic activity at Mt. Etna, Italy
- DOI:
10.1016/j.jvolgeores.2008.11.026 - 发表时间:
2009-01-20 - 期刊:
- 影响因子:
- 作者:
Margherita Polacci;Michael R. Burton;Alessandro La Spina;Filippo Murè;Stefano Favretto;Franco Zanini - 通讯作者:
Franco Zanini
<em>In situ</em> quantification of crystallisation kinetics of plagioclase and clinopyroxene in basaltic magma: Implications for lava flow
- DOI:
10.1016/j.epsl.2021.117016 - 发表时间:
2021-08-15 - 期刊:
- 影响因子:
- 作者:
Nolwenn Le Gall;Fabio Arzilli;Giuseppe La Spina;Margherita Polacci;Biao Cai;Margaret E. Hartley;Nghia T. Vo;Robert C. Atwood;Danilo Di Genova;Sara Nonni;Edward W. Llewellin;Mike R. Burton;Peter D. Lee - 通讯作者:
Peter D. Lee
Margherita Polacci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
皖南竹溪岭钨矿床岩浆-热液转换与成矿精细过程研究
- 批准号:42362016
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
造山型金矿床的精细成矿作用过程及其与岩浆活动的关系:以西秦岭造山带李坝金矿床为例
- 批准号:42302088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
幔源超钾质岩浆的注入是否为碰撞型斑岩铜矿提供S和Cl:源自磷灰石原位成分的限定
- 批准号:42302074
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
五大连池高钾火山岩区壳幔岩浆系统的精细结构成像研究
- 批准号:42374065
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
构造剥蚀视角下岩浆弧的破坏与再循环:以班公湖-怒江缝合带为例
- 批准号:42302240
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
NSFGEO-NERC: Imaging the magma storage region and hydrothermal system of an active arc volcano
NSFGEO-NERC:对活弧火山的岩浆储存区域和热液系统进行成像
- 批准号:
NE/X000656/1 - 财政年份:2025
- 资助金额:
$ 194.55万 - 项目类别:
Research Grant
NERC-NSFGEO: Imaging the magma storage region and hydrothermal system of an active arc volcano
NERC-NSFGEO:对活弧火山的岩浆储存区域和热液系统进行成像
- 批准号:
2404029 - 财政年份:2024
- 资助金额:
$ 194.55万 - 项目类别:
Continuing Grant
Phase equilibria experiments to constrain magma storage at Mt Churchill, Alaska; refining the magmatic source of the White River Ash eruptions
阿拉斯加丘吉尔山限制岩浆储存的相平衡实验;
- 批准号:
2308646 - 财政年份:2023
- 资助金额:
$ 194.55万 - 项目类别:
Standard Grant
Mineral records of magma storage and crystallization on the Moon
月球上岩浆储存和结晶的矿物记录
- 批准号:
2594636 - 财政年份:2021
- 资助金额:
$ 194.55万 - 项目类别:
Studentship
CAREER: Rethinking the Dynamics of Magma Storage and Eruption for Yellowstone’s Youngest Supereruption’
职业生涯:重新思考黄石公园最年轻的超级喷发的岩浆储存和喷发动力学
- 批准号:
2042662 - 财政年份:2021
- 资助金额:
$ 194.55万 - 项目类别:
Continuing Grant