Accelerating plant breeding by modulating recombination.
通过调节重组加速植物育种。
基本信息
- 批准号:MR/T043253/1
- 负责人:
- 金额:$ 158.92万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
To meet expected demand, the world will need to produce 50 percent more food in 2050 than it did in 2012. While similar growth rates have been achieved in the past, future growth faces the additional pressure of climate change and the need for reduced chemical inputs. Sustainably enhancing agricultural production is therefore a major challenge facing the sector.A valuable source of traits for disease resistance and abiotic stress tolerance resides in thousands of living wild crop relatives. Accessing these traits for plant breeding, however, is limited by "genetic drag", where low levels of genetic exchange (recombination) means that both desirable and undesirable "wild traits" are introduced and can be difficult to separate. Boosting recombination overcomes genetic drag allowing access to diverse germplasm, as well as increasing the efficiency of traditional breeding programs, helping generate the new combinations of traits required for crop improvement in fewer generations.Recombination can be increased in plants 8-fold by knocking out anti-recombinase genes. However, establishing multigene knockouts in every breeding program is not practical, approaches used to generate mutants may preclude cultivation in tightly (GMO) regulated environments and the mutations introduced can reduce fertility, so wild type alleles must be restored prior to cultivation. Transiently increasing recombination without modification of the recombination machinery itself would solve these problems.To achieve this goal, we will use high-throughput screening assays to identify small molecule inhibitors of key recombination suppressing proteins that can be used to transiently boost recombination in a wide variety of crop species. To identify inhibitors, we will design targeted compound libraries for screening based on molecules identified in large biomedical drug screens that inhibit human orthologs of our target proteins. In addition, virtual screening of large compound libraries will be used to identify further compounds of interest for testing. We will also identify and/or develop plant versions of peptides known to boost recombination in mammalian systems. Once identified, delivery of recombination boosting small-molecules will be optimised for use in crops. This will be initially be undertaken in Brassica and barley, covering a dicot crop closely related to the model plant Arabidopsis, and a key grain crop, both with well-developed cytological tools. Another route for crop development is to incorporate the traits and diversity of two genomes into a single individual - known as allopolyploidy. Allopolyploid plants are common in agriculture (e.g. wheat and cotton) as their fixed hybrid nature usually results in improved agricultural traits. Despite their potential, previous attempts to generate new allopolyploid crops have failed as they tend to have genomic instability and low fertility due to recombination between the two sub-genomes. Two interacting genes have recently been implicated in suppressing this inter-genomic recombination and we will assess the potential to use/modify these genes, and others in the same pathway, to engineer a stable meiosis in new allopolyploids. If successful we will use this approach to generate new genetically stable allopolyploid Brassica and pasture grasses.This multi-disciplinary project, draws on expertise of the Fellow and Project Partners in molecular plant science, phenomics, plant breeding, polyploidy, medicinal chemistry and biochemistry to modify recombination in plants for accelerated plant breeding, helping to develop the high nutrition, climate ready and disease resistant crops needed to meet future food needs. The final three years of the project will involve product development in collaboration with breeding companies to optimise delivery and effectiveness during plant breeding and establishment of a start-up company to commercialise the product(s) developed.
为了满足预期的需求,全世界在2050年的食物中需要比2012年的食物多50%。尽管过去已经达到了相似的增长率,但未来的增长面临着气候变化的额外压力以及化学输入减少的需求。因此,可持续增强的农业生产是该行业面临的主要挑战。疾病抵抗和非生物胁迫耐受性的宝贵特征属于成千上万的野生作物亲戚。然而,获得这些特征的植物育种受到“遗传阻力”的限制,在这种特征中,遗传交换的水平低(重组)意味着引入了理想和不希望的“野生特征”,并且很难分离。促进重组克服了遗传阻力,从而可以进入多种种质,并提高传统育种计划的效率,从而帮助产生更少世代的作物改善所需的新特征组合。在植物中可以增加抗抗组织酶基因的植物中的重组。但是,在每个繁殖计划中建立多基因敲除不实用,用于产生突变体的方法可能会在严格的(GMO)受调节的环境中排除培养,并且引入的突变可以降低生育能力,因此必须在培养之前恢复野生型等位基因。在不修改重组机制本身的情况下,瞬时增加重组将解决这些问题。为了实现这一目标,我们将使用高通量筛选测定法确定关键重组抑制蛋白的小分子抑制剂,这些抑制蛋白质可用于在多种农作物中迅速增强重组。为了鉴定抑制剂,我们将根据在大型生物医学药物筛选中鉴定的分子设计有针对性的化合物文库,以抑制我们靶蛋白的人类直系同源物。此外,将使用大型化合物库的虚拟筛选来识别进一步的测试感兴趣的化合物。我们还将确定和/或开发已知的肽的植物版本,以增强哺乳动物系统中的重组。一旦确定,重组促进小分子的递送将被优化用于农作物。最初,这将在Brassica和Barley进行,涵盖了与模型植物拟南芥密切相关的DICOT作物,以及具有良好发达的细胞学工具的关键谷物作物。农作物发育的另一种途径是将两个基因组的特征和多样性融入一个单个个体(称为杂质素)中。同种多倍体植物在农业(例如小麦和棉花)中很常见,因为它们的固定杂交性质通常会改善农业特征。尽管它们具有潜力,但以前的产生新的同多倍体作物的尝试却失败了,因为它们往往由于两个亚基因组之间的重组而具有基因组不稳定性和低生育能力。最近,两个相互作用的基因涉及抑制这种基因组间重组,我们将评估使用/修改这些基因的潜力,而在同一途径中使用了这些基因,以在新的同种倍倍体中设计稳定的减数分裂。 If successful we will use this approach to generate new genetically stable allopolyploid Brassica and pasture grasses.This multi-disciplinary project, draws on expertise of the Fellow and Project Partners in molecular plant science, phenomics, plant breeding, polyploidy, medicinal chemistry and biochemistry to modify recombination in plants for accelerated plant breeding, helping to develop the high nutrition, climate ready and disease resistant crops needed满足未来的食物需求。该项目的最后三年将涉及与育种公司合作的产品开发,以优化植物育种和成立初创公司,以商业化开发产品。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Crossover interference: Just ZYP it.
交叉干扰:只需 ZYP 即可。
- DOI:10.1073/pnas.2103433118
- 发表时间:2021
- 期刊:
- 影响因子:11.1
- 作者:Crismani W
- 通讯作者:Crismani W
Meiosis in allopolyploid Arabidopsis suecica.
- DOI:10.1111/tpj.15879
- 发表时间:2022-08
- 期刊:
- 影响因子:7.2
- 作者:Nibau, Candida;Gonzalo, Adrian;Evans, Aled;Sweet-Jones, William;Phillips, Dylan;Lloyd, Andrew
- 通讯作者:Lloyd, Andrew
Crossover patterning in plants.
- DOI:10.1007/s00497-022-00445-4
- 发表时间:2023-03
- 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Lloyd其他文献
Principal—Agent Relationships in General Practice: The First Wave of English Personal Medical Services Pilot Contracts
全科医学中的委托代理关系:第一波英国个人医疗服务试点合同
- DOI:
10.1177/135581960000500306 - 发表时间:
2000 - 期刊:
- 影响因子:2.4
- 作者:
R. Sheaff;Andrew Lloyd - 通讯作者:
Andrew Lloyd
Attentional Engagement During Mobile Application Skill Learning Among Patients With Memory Impairment: A Case Series Exploration.
记忆障碍患者移动应用技能学习期间的注意力参与:案例系列探索。
- DOI:
10.5014/ajot.2023.050064 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Brandon P Vasquez;Andrew Lloyd;Anna Santiago;G. Shahaf;Jordan W Lass - 通讯作者:
Jordan W Lass
MP86-14 PATIENT VALUATION OF CASTRATION-RESISTANT PROSTATE CANCER HEALTH STATES
- DOI:
10.1016/j.juro.2018.02.2894 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:
- 作者:
Nancy Dawson;Anne Rentz;Andrew Lloyd;Louis Matza;Ajay Behl;Sonal Mansukhani;Murali Sundaram;Brian Macomson;Neal Shore;Stephen Freedland - 通讯作者:
Stephen Freedland
Prevalence of blood-borne virus infections and uptake of hepatitis C testing and treatment in Australian prisons: the AusHep study
- DOI:
10.1016/j.lanwpc.2024.101240 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Rugiatu Bah;Yumi Sheehan;Xiaoying Li;Gregory J. Dore;Jason Grebely;Andrew R. Lloyd;Behzad Hajarizadeh;Andrew Lloyd;Behzad Hajarizadeh;Yumi Sheehan;Rugi Bah;Charlotte Li;Marianne Byrne;Tony Butler;Bridget Musarurwa;Elmira Hooshmand;Annabeth Simpson;Meya Alrayyani;Jason Grebely;Greg Dore - 通讯作者:
Greg Dore
The long and the short of interferon‐gamma–inducible protein 10 in hepatitis C virus infection
丙型肝炎病毒感染中干扰素γ诱导蛋白10的长短
- DOI:
10.1002/hep.24600 - 发表时间:
2011 - 期刊:
- 影响因子:13.5
- 作者:
M. Gorrell;A. Zekry;G. W. McCaughan;Andrew Lloyd - 通讯作者:
Andrew Lloyd
Andrew Lloyd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Lloyd', 18)}}的其他基金
Collaborative Research: Imaging the 3D Viscosity Structure of the Antarctic Mantle with Existing Observations from GPS and Relative Sea Level
合作研究:利用 GPS 和相对海平面的现有观测结果对南极地幔的 3D 粘度结构进行成像
- 批准号:
2142592 - 财政年份:2022
- 资助金额:
$ 158.92万 - 项目类别:
Standard Grant
Targeted Infusion Project: Expanding Educational Cyber-Infrastructure at Delaware State University
有针对性的注入项目:扩大特拉华州立大学的教育网络基础设施
- 批准号:
1434978 - 财政年份:2014
- 资助金额:
$ 158.92万 - 项目类别:
Standard Grant
Delaware Scholarships for Undergraduates in Science, Technology, Engineering, and Mathematics (DSU-STEM)
特拉华州科学、技术、工程和数学本科生奖学金 (DSU-STEM)
- 批准号:
0965893 - 财政年份:2010
- 资助金额:
$ 158.92万 - 项目类别:
Standard Grant
相似国自然基金
水稻种传微生物组在植物抗病中的功能及作用机制
- 批准号:32302462
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
植物—土壤反馈在高原鼢鼠鼠丘次生演替群落构建中的作用机制
- 批准号:32360345
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
激素调控外来入侵植物瘤突苍耳吸收硝态氮的机制研究
- 批准号:32301467
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于线粒体能量代谢及微循环障碍的多参数MR诊断和预测心脏移植物血管病研究
- 批准号:82371903
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Plant seed enlarge breeding by utilizing the plant new tissue "The final form of the phloem end".
利用植物新组织“韧皮部末端的最终形态”进行植物种子扩大育种。
- 批准号:
22K21366 - 财政年份:2023
- 资助金额:
$ 158.92万 - 项目类别:
Fund for the Promotion of Joint International Research (Home-Returning Researcher Development Research)
Plant selection and breeding for Net Zero
净零植物选择和育种
- 批准号:
EP/Y005694/1 - 财政年份:2023
- 资助金额:
$ 158.92万 - 项目类别:
Research Grant
Plant selection and breeding for net zero
净零植物选择和育种
- 批准号:
EP/Y00504X/1 - 财政年份:2023
- 资助金额:
$ 158.92万 - 项目类别:
Research Grant
Miscanthus AI- Plant selection and breeding for Net Zero
芒草 AI - 净零植物选择和育种
- 批准号:
EP/Y005430/1 - 财政年份:2023
- 资助金额:
$ 158.92万 - 项目类别:
Research Grant
Organic seed and plant breeding to accelerate sustainable and diverse food systems in Europe
有机种子和植物育种,以加速欧洲可持续和多样化的粮食系统
- 批准号:
10049015 - 财政年份:2022
- 资助金额:
$ 158.92万 - 项目类别:
EU-Funded