Greener, cleaner, composites

更环保、更清洁的复合材料

基本信息

  • 批准号:
    MR/T023406/1
  • 负责人:
  • 金额:
    $ 69.32万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

The overall aim of this proposal is to develop a fundamental understanding of the processing fabrication and performance of polymer based composites where the matrix material is either partially or wholly derived from bio-based feedstock. Moreover, the knowledge gained during this Fellowship will allow FAC Technology to increase commercial uptake in composite components manufactured from bio-based resin.Epoxy resin is the matrix of choice for high-performance composites due to their outstanding mechanical properties, including high modulus, high strength and favourable processing characteristics, e.g. low viscosity. Epoxy accounts for approximately 70% of the thermoset resin market worldwide. Diglycidylether of bisphenol A (DGEBA) is the most widely used monomer to formulate epoxy resins. DGEBA is mostly synthesised from fossil resources. Thus, there is clearly a pressing need to explore alternative thermoset chemistry that can be derived from renewable resources to reduce our dependence on fossil resources and our impact on the planet.Interest in resin and fibres derived from biological materials has surged in recent years, fueled by a desire to become more environmentally friendly and reduce dependence on dwindling fossil fuel supplies. Although epoxy polymers have generally good mechanical properties, they suffer from a lack of toughness due to the high degree of crosslinking in the cured thermoset. This lack of toughness has been alleviated in recent years by groups such as Kinloch et al at Imperial College London (Dr. Carolan was previously a Fellow with Prof. Kinloch). This is achieved by adding additives in to the resin blend before final cure of the component. Micron scale rubber particles, either preformed or formed via reaction induced phase separation have proven to be most effective. Bio-based resins also suffer from lack of toughness. To date, no extensive study on the 'toughenability' of bio-based resins (or hybrid resin containing a mixture of bio-based and conventional petroleum derived thermosets) has been carried out. 'Toughenability' refers to the amount by which the toughness of a thermoset polymer increases per unit additive added. It is currently unknown whether, or how well, the same toughening mechanisms will apply. Such knowledge is absolutely critical to increase the usage of more environmentally friendly resins from renewable feedstocks. The Future Leaders Fellowship will enable Dr. Carolan to be at the forefront of this transition in the UK composites industry.Indeed, there is some evidence in the literature to suggest that blends of petroleum derived resins and bio-derived resins will naturally phase separate during the curing reaction. Dr. Carolan has already demonstrated that by controlling the rate of the curing reaction, it is possible to profoundly influence the final microstructure of a phase separated system. This potentially means that the use of hybrid fossil- and bio-derived resins may offer synergistic benefits over the other. This will be investigated during the proposed Fellowship.The work proposed is multi-disciplinary in nature and will bridge the fields of materials science, chemistry and mechanical engineering. Moreover, by considering the effect of the molecular makeup of a resin, the Fellowship will bridge the length scales within a composite structure from the molecular level, through to the nanoscale and mesoscopic fibre-matrix interface behaviour and finally considering the composite structure itself. The element of time (or reaction rate) in determining the final microstructure will also be considered. This system level design approach, from molecule to component and from 'Pot to Part', is a truly innovative idea in industry and will allow FAC Technology to better design composite structure using less and less material while extracting ever more functionality from the structure and position Dr. Carolan as one of the industry leaders in composite materials in the UK.
该提案的总体目的是对基于聚合物的复合材料的加工制造和性能进行基本理解,其中矩阵材料部分或完全来自基于生物的原料。此外,在此奖学金中获得的知识将使FAC技术能够增加基于生物的树脂制造的复合组件中的商业摄取。Epoxy树脂是高性能复合材料的首选矩阵,因为它们的出色机械性能,包括高模量,高强度,高强度和有利的处理特征,例如。低粘度。环氧树脂约占全球热固性树脂市场的70%。双苯酚A(DGEBA)的二甘氨酸是制定环氧树脂的最广泛使用的单体。 DGEBA主要是由化石资源合成的。因此,显然需要探索替代的热固性化学反应,可以从可再生资源中得出,以减少我们对化石资源的依赖以及对地球的影响。近年来,树脂和生物材料的纤维兴起,这是由于渴望变得更加环保,并降低对逐渐友好的依赖性的愿望,并促进了对植物友好的愿望。尽管环氧聚合物通常具有良好的机械性能,但由于固化的热固件中的高度交联,它们缺乏韧性。近年来,诸如伦敦帝国学院的Kinloch等人等团体已经减轻了这种缺乏韧性(Carolan博士以前是Kinloch教授的研究员)。这是通过将添加剂添加到零部件的最终固化之前将添加剂添加到树脂混合物中来实现的。事实证明,通过反应诱导的相分离形成的微米尺度橡胶颗粒是最有效的。基于生物的树脂也缺乏韧性。迄今为止,尚未对基于生物的树脂(或含有生物基和常规石油衍生的热固性的混合物)的“可韧性”进行广泛的研究。 “可韧性”是指热固性聚合物每单位添加剂增加的韧性增加的量。目前尚不清楚是否将适用相同的韧性机制。这种知识对于增加可再生原料对环保树脂的使用绝对至关重要。未来的领导者奖学金将使卡罗兰博士能够在英国复合材料行业处于这种过渡的最前沿。实际上,文献中有一些证据表明,石油衍生的树脂和生物衍生的树脂的混合物在固化反应期间自然会分开。 Carolan博士已经证明,通过控制固化反应的速率,可以深刻影响相分离系统的最终微观结构。这可能意味着使用混合化石和生物衍生的树脂可能会提供与其他化石的协同益处。这将在拟议的奖学金期间进行调查。拟议的工作本质上是多学科的,将弥合材料科学,化学和机械工程领域。此外,通过考虑树脂分子构成的作用,研究金将桥接从分子水平到纳米级和介质纤维 - 摩晶质体界面行为的复合结构内的长度尺度,并最终考虑复合结构本身。还将考虑确定最终微观结构的时间元素(或反应速率)。从分子到组件以及从“锅到部分”,这种系统级设计方法是行业中真正创新的想法,它将允许FAC技术更好地使用越来越多的材料设计复合结构,同时从结构中提取更多功能,并将Carolan博士作为英国复合材料中的行业领导者之一。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Digital image correlation of cross-ply laminates in tension to reveal microcracking
  • DOI:
    10.1016/j.compstruct.2023.117148
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    G. Irven;D. Carolan;A. Fergusson;J. Dear
  • 通讯作者:
    G. Irven;D. Carolan;A. Fergusson;J. Dear
Fracture performance of epoxy foam: Low density to bulk polymer
环氧泡沫的断裂性能:低密度至本体聚合物
  • DOI:
    10.1016/j.polymer.2022.125420
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Irven G
  • 通讯作者:
    Irven G
Toughening of face-sheet core bonds in sandwich structures
  • DOI:
    10.1016/j.engfracmech.2023.109498
  • 发表时间:
    2023-07-26
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Irven,George;Whitehouse,Adam;Dear,John P.
  • 通讯作者:
    Dear,John P.
Advances in Structural Adhesive Bonding
结构胶粘合的进展
  • DOI:
    10.1016/b978-0-323-91214-3.00026-0
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ashcroft I
  • 通讯作者:
    Ashcroft I
Fracture performance of fibre-reinforced epoxy foam
纤维增强环氧泡沫塑料的断裂性能
  • DOI:
    10.1016/j.compositesb.2022.110433
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    12.8
  • 作者:
    Irven G
  • 通讯作者:
    Irven G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Declan Carolan其他文献

Declan Carolan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Declan Carolan', 18)}}的其他基金

Greener cleaner composites [extension]
更环保、更清洁的复合材料[扩展]
  • 批准号:
    MR/Y020057/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.32万
  • 项目类别:
    Fellowship

相似海外基金

Greener cleaner composites [extension]
更环保、更清洁的复合材料[扩展]
  • 批准号:
    MR/Y020057/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.32万
  • 项目类别:
    Fellowship
CLEANER - Clean Heat and Power from Hydrogen
CLEANER——利用氢气清洁热能和电力
  • 批准号:
    10103876
  • 财政年份:
    2024
  • 资助金额:
    $ 69.32万
  • 项目类别:
    EU-Funded
CAREER: AI-enabled Integrated Nutrient, Streamflow, and Parcel sImulation for Resilient agroEcosystems (INSPIRE): a framework for climate-smart crop production and cleaner water
职业:基于人工智能的弹性农业生态系统综合养分、水流和地块模拟 (INSPIRE):气候智能型作物生产和清洁水的框架
  • 批准号:
    2338563
  • 财政年份:
    2024
  • 资助金额:
    $ 69.32万
  • 项目类别:
    Continuing Grant
AirPressureNYC: Reducing AIR pollution to lower blood PRESSURE among New York City public housing residents
AirPressureNYC:减少空气污染以降低纽约市公共住房居民的血压
  • 批准号:
    10638946
  • 财政年份:
    2023
  • 资助金额:
    $ 69.32万
  • 项目类别:
2/2 Multi-Center CLEAN AIR 2 Randomized Control Trial in COPD
2/2 慢性阻塞性肺病多中心 CLEAN AIR 2 随机对照试验
  • 批准号:
    10722232
  • 财政年份:
    2023
  • 资助金额:
    $ 69.32万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了