400 Million Years of Food Transport in Plants: unearthing the origin, diversity and genetic toolkit of vasculature
植物中 4 亿年的食物运输:挖掘脉管系统的起源、多样性和遗传工具包
基本信息
- 批准号:MR/T018585/1
- 负责人:
- 金额:$ 138.75万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Distribution of water, mineral nutrients and food throughout the plant is carried out using an internal plumbing system made up of two highly specialised tissues - xylem and phloem. The acquisition of these specialised tissues during plant evolution was one of the key innovations that allowed plants to evolve from tiny moss-like species into the towering trees and the diversity of crop species that dominate the landscape today. The xylem and phloem are intimately linked, but functionally different, with the xylem transporting water and the phloem transporting food throughout the plant. All economically important plants, whether crop or forest species, rely on the transport of food, in the form of sugars, through the phloem. However, despite the key role that the phloem plays in all parts of plant life, we do not know how the structure and function of the phloem will change, or can be engineered to respond, to future climate change. A vital line of evidence for predicting how the phloem will likely change in the future is preserved in the previously unexplored fossil record of plants that lived through prehistoric episodes of global climate change, and extremes of atmospheric CO2. The aim of the proposed research is to investigate key unanswered questions about the evolution of the phloem, one of the most important but least well understood plant tissues. I will transform our knowledge of phloem evolution by tackling three overarching questions: (i) when did the phloem originate, (ii) how has its structure, function and genetic toolkit evolved over the past 400 million years, (iii) how has phloem evolution been driven by climate change? To answer these questions I will combine cutting-edge 3D imaging of fossils, computational modelling of phloem function never before undertaken with fossils, and comparative genomic analyses of living plants. To answer these key questions I have identified three objectives for the Fellowship:1. Define the origin of the phloem in land plants2. Reveal major evolutionary innovations in phloem structure and function in relation to climatic change through geological time.3. Characterise the genetic innovations that underpinned the diversification of the phloemCombining studies of living species, fossils and genes, I will draw evolutionary conclusions about the phloem that none of these lines of evidence alone could achieve, marking a step change in our understanding of phloem evolution. The impact of this study will be to shed light on the evolution of this crucial plant tissue and to help understand how the structure and function of the phloem is tied to the level of atmospheric CO2. The findings of the Fellowship will therefore be essential for predicting how the phloem structure of living plants, including economically important crop and tree species, will likely respond in the next 50 to 100 years to rising atmospheric CO2 caused by anthropogenic climate change.I will be uniquely placed at the University of Edinburgh to carry out this programme of research. The School of Biological Sciences (SBS) is a world leader in studying the structural, functional and genetic changes that underpin complex plant traits in diverse lineages. In addition, my Fellowship will benefit greatly from collaboration with the palaeobiology group in the outstanding School of Geoscience and the collections of the two project partner organisations; the fossil plants in the National Museum Scotland (NMS) and living collections in the Royal Botanic Garden Edinburgh (RBGE). In particular, the NMS contains a unique and unexploited collection that will be essential for my proposed research. Taken together, the excellent research environment in SBS, strength in palaeobiology in the School of Geoscience and access to the collections of the project partners makes this a Fellowship that could not be successfully accomplished anywhere else in the world.
水、矿物质养分和食物在整个植物中的分配是通过内部管道系统进行的,该系统由两个高度专业化的组织——木质部和韧皮部组成。在植物进化过程中获得这些特殊的组织是关键的创新之一,它使植物能够从微小的苔藓类物种进化成参天大树,并形成今天主导景观的作物物种多样性。木质部和韧皮部紧密相连,但功能不同,木质部在整个植物中运输水,韧皮部运输食物。所有经济上重要的植物,无论是农作物还是森林物种,都依赖于通过韧皮部以糖的形式运输食物。然而,尽管韧皮部在植物生命的各个部分都发挥着关键作用,但我们不知道韧皮部的结构和功能将如何变化,或者如何设计以应对未来的气候变化。预测韧皮部未来可能如何变化的重要证据保存在先前未经探索的植物化石记录中,这些植物经历了史前全球气候变化和大气二氧化碳极端事件。拟议研究的目的是调查有关韧皮部进化的关键未解答问题,韧皮部是最重要但了解最少的植物组织之一。我将通过解决三个首要问题来转变我们对韧皮部进化的认识:(i) 韧皮部起源于何时,(ii) 在过去的 4 亿年里,韧皮部的结构、功能和遗传工具包是如何进化的,(iii) 韧皮部是如何进化的是由气候变化驱动的吗?为了回答这些问题,我将结合尖端的化石 3D 成像、前所未有的化石韧皮部功能计算模型,以及活体植物的比较基因组分析。为了回答这些关键问题,我确定了该奖学金的三个目标:1。定义陆地植物韧皮部的起源2。揭示与地质时期气候变化相关的韧皮部结构和功能的重大进化创新。3.描述支撑韧皮部多样化的遗传创新特征结合对生物物种、化石和基因的研究,我将得出有关韧皮部的进化结论,这是仅凭这些证据无法得出的结论,这标志着我们对韧皮部进化的理解发生了一步变化。这项研究的影响将是揭示这一重要植物组织的进化,并帮助了解韧皮部的结构和功能如何与大气二氧化碳水平相关。因此,该奖学金的研究结果对于预测活植物(包括重要经济作物和树种)的韧皮部结构在未来 50 到 100 年内可能如何应对人为气候变化引起的大气二氧化碳浓度上升至关重要。爱丁堡大学拥有独特的地位来开展这项研究计划。生物科学学院 (SBS) 在研究支撑不同谱系复杂植物性状的结构、功能和遗传变化方面处于世界领先地位。此外,我的奖学金将受益于与杰出的地球科学学院古生物学小组的合作以及两个项目合作组织的收藏;苏格兰国家博物馆 (NMS) 的化石植物和爱丁堡皇家植物园 (RBGE) 的活体收藏品。特别是,NMS 包含一个独特且未开发的集合,这对于我提出的研究至关重要。总而言之,SBS 优良的研究环境、地球科学学院古生物学的实力以及项目合作伙伴收藏的机会,使得这项奖学金成为世界其他任何地方都无法成功完成的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Leaves and sporangia developed in rare non-Fibonacci spirals in early leafy plants.
在早期叶植物中,叶子和孢子囊以罕见的非斐波那契螺旋形式发育。
- DOI:10.1126/science.adg4014
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Turner HA
- 通讯作者:Turner HA
New views on old seeds: a new description of Genomosperma sheds light on early seed evolution.
对古老种子的新观点:对基因子植物的新描述揭示了早期种子的进化。
- DOI:10.1111/nph.16875
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Hetherington AJ
- 通讯作者:Hetherington AJ
The Making of Plant Armor: The Periderm.
- DOI:10.1146/annurev-arplant-102720-031405
- 发表时间:2022-01
- 期刊:
- 影响因子:23.9
- 作者:Olga Serra;Ari Pekka Mähönen;Alexander J. Hetherington;L. Ragni
- 通讯作者:Olga Serra;Ari Pekka Mähönen;Alexander J. Hetherington;L. Ragni
An evidence-based 3D reconstruction of Asteroxylon mackiei, the most complex plant preserved from the Rhynie chert.
- DOI:10.7554/elife.69447
- 发表时间:2021-08-24
- 期刊:
- 影响因子:7.7
- 作者:Hetherington AJ;Bridson SL;Lee Jones A;Hass H;Kerp H;Dolan L
- 通讯作者:Dolan L
Entophysalis in the Rhynie chert (Lower Devonian, Scotland): implications for cyanobacterial evolution
雷尼燧石中的内泡菌(苏格兰下泥盆统):对蓝藻进化的影响
- DOI:10.1017/s0016756824000049
- 发表时间:2024
- 期刊:
- 影响因子:2.3
- 作者:McMahon S
- 通讯作者:McMahon S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Hetherington其他文献
In vivo behavior of acrylic bone cement in total hip arthroplasty.
丙烯酸骨水泥在全髋关节置换术中的体内行为。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:14
- 作者:
M. Ries;Ernest Young;Laila Al;Philip Goldstein;Alexander Hetherington;T. Petrie;L. Pruitt - 通讯作者:
L. Pruitt
Alexander Hetherington的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Hetherington', 18)}}的其他基金
Uncovering the evolutionary history and significance of Fibonacci spirals in vascular plants
揭示维管植物中斐波那契螺旋的进化历史和意义
- 批准号:
EP/Y037138/1 - 财政年份:2024
- 资助金额:
$ 138.75万 - 项目类别:
Research Grant
400 Million Years of Food Transport in Plants: unearthing the origin, diversity and genetic toolkit of vasculature
植物中 4 亿年的食物运输:挖掘脉管系统的起源、多样性和遗传工具包
- 批准号:
MR/Y03399X/1 - 财政年份:2024
- 资助金额:
$ 138.75万 - 项目类别:
Fellowship
相似国自然基金
活动断裂百万年时间尺度的滑动速率研究:以青藏高原东北缘海原左旋走滑断裂为例
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
百万变星时代,时域大数据研究和网站建设
- 批准号:12173047
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
百万级通道柔性植入式神经电刺激集成电路阵列
- 批准号:82151305
- 批准年份:2021
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
水下动目标百万像素单闪激光三维成像
- 批准号:62005264
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于异步通讯架构的百万级神经元类脑计算芯片关键技术研究
- 批准号:
- 批准年份:2020
- 资助金额:259 万元
- 项目类别:联合基金项目
相似海外基金
400 Million Years of Food Transport in Plants: unearthing the origin, diversity and genetic toolkit of vasculature
植物中 4 亿年的食物运输:挖掘脉管系统的起源、多样性和遗传工具包
- 批准号:
MR/Y03399X/1 - 财政年份:2024
- 资助金额:
$ 138.75万 - 项目类别:
Fellowship
Frontier Bioscience - 400 Million Years of Sugar Transport in Plants: Unearthing the origin, evolution and genetic toolkit of the phloem
Frontier Bioscience - 4亿年植物糖运输:揭示韧皮部的起源、进化和遗传工具包
- 批准号:
2672587 - 财政年份:2021
- 资助金额:
$ 138.75万 - 项目类别:
Studentship
Elucidation of evolutionary significance of vertebrate microchromosomes conserved for 400 million years
阐明保存了 4 亿年的脊椎动物微染色体的进化意义
- 批准号:
21K06286 - 财政年份:2021
- 资助金额:
$ 138.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
400 Million Years of Sugar Transport in Plants: unearthing the evolutionary origin of the phloem in the Rhynie chert
植物中 4 亿年的糖运输:挖掘雷尼燧石韧皮部的进化起源
- 批准号:
2589488 - 财政年份:2021
- 资助金额:
$ 138.75万 - 项目类别:
Studentship
400 million years of faithfulness - how the transcriptional regulators LEUNIG and SEUSS co-evolved to become key factors of reproductive development in Arabidopsis thaliana
4 亿年的忠实——转录调控因子 LEUNIG 和 SEUSS 如何共同进化成为拟南芥生殖发育的关键因素
- 批准号:
456704277 - 财政年份:
- 资助金额:
$ 138.75万 - 项目类别:
Research Units