MICA: Development of gene therapy for the incurable inherited childhood epilepsy, Dravet Syndrome
MICA:针对无法治愈的遗传性儿童癫痫 Dravet 综合征的基因疗法的开发
基本信息
- 批准号:MR/P026494/1
- 负责人:
- 金额:$ 65.55万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dravet syndrome is a rare, devastating infantile epilepsy. Before the age of two children suffer seizures, movement problems, cognitive impairment and may die. Often children can't talk, and suffer behavioural difficulties which imposes a tremendous burden on the family and carers. Children with Dravet have mutations in the SCN1A gene, which makes a protein "Nav1.1". This protein is vital for the functioning of neurons in the brain, and the mutations in this protein disrupt the normal balance of electrical activity in the brain. Unfortunately, this disease remains is incurable and drugs to treat Dravet do not work very well. They often have side effects, fail to fully control seizures, and don't improve other aspects of the disease such as the movement and cognitive problems. Administering drugs can also be a challenge, as Dravet children may struggle to swallow or reject food. There is a strain of mice which has a very disease to Dravet syndrome. It carries a similar mutation to that in Dravet children. This similarity to the human disease means that the mouse models of Dravet syndrome are very using for testing new treatments of Dravet. Gene therapy offers many benefits over drug therapy and surgery. Gene therapy is a treatment which, instead of simply treating the symptoms, addresses the cause of the disease by delivering the corrected copies of the SCN1A directly to the cells in the brain. Gene therapy use particles called "vectors" which resemble viruses, to deliver the DNA. Gene therapy has already been used to cure children with severe genetic diseases and promising results are now being seen with neurological diseases such as inherited Parkinsonism.However, gene therapy for Dravet syndrome faces several challenges. The SCN1A gene is large, and this limits incorporation into the most common gene therapy vectors. We have identified a vector which is capable of carrying the full length gene. This vectors has already been used in gene therapy clinical trials to treat adult patients with Parkinson's Disease. Another challenge that is particular to Dravet and SCN1A, is the extreme difficulty in making large amounts of gene in the laboratory, ready for delivery. This has thwarted gene therapy laboratories around the world. We have partnered with a company called Touchlight Genetics who can make large amounts DNA, using purified enzymes. Therefore, we hope to be able to make large amounts of SCN1A which will allow us to make gene therapy vector to treat and potentially reverse the cause of Dravet. Firstly, Touchlight Genetics will make large amounts of DNA with which we can make a lentivirus vector containing the human SCN1A gene. From this we will make gene therapy vectors and test that they work in brain cells in a dish ("in vitro"). These cells will be neurons from the mice which have mutant non-functional SCN1A genes. We will measure the electrical currents (a technique called patch clamping) to detect whether our gene therapy has successfully delivered working copies of the SCN1A gene, so that the cells can make working Nav1.1 protein. If this works, we will test the gene therapy in in mutant mice. We will inject the gene therapy vector into their brain on the day of birth and look for symptoms of the diseases. We will compare them to normal, unaffected mice. We will study their brains for any evidence of disease and may measure electrical currents to see how much of the Nav1.1 protein was made after gene therapy. We will also check that the gene therapy is safe, by injecting vector into brains of some normal mice (carrying no SCN1A mutation). This project is aimed at developing a medicine to treat a devastating disease for which there is presently no cure. If this project works, the technologies we have used in making and delivering this gene therapy may benefit many other childhood diseases where gene therapy has previously proven to be difficult.
Dravet综合征是一种罕见的毁灭性婴儿癫痫。在两个孩子遭受癫痫发作,运动问题,认知障碍之前,可能会死亡。通常,孩子不能说话,遭受行为困难,这给家人和照顾者带来了巨大的负担。 Dravet的儿童在SCN1a基因中有突变,这使蛋白质“ NAV1.1”。该蛋白对于大脑中神经元的功能至关重要,该蛋白质中的突变破坏了大脑中电活动的正常平衡。不幸的是,这种疾病仍然是无法治愈的,治疗Dravet的药物效果不佳。它们通常会产生副作用,无法完全控制癫痫发作,并且不会改善疾病的其他方面,例如运动和认知问题。服用药物也可能是一个挑战,因为Dravet儿童可能难以吞咽或拒绝食物。有一群小鼠菌株具有非常疾病的Dravet综合征。它带有与Dravet儿童相似的突变。与人类疾病的这种相似性意味着,Dravet综合征的小鼠模型非常用于测试Dravet的新治疗方法。基因疗法对药物治疗和手术提供了许多好处。基因疗法是一种治疗方法,而不是简单地治疗症状,而是通过将SCN1A的校正副本直接传递给大脑中的细胞来解决疾病的原因。基因疗法使用称为“载体”的颗粒,类似于病毒,以传递DNA。基因疗法已经被用来治愈患有严重遗传疾病的儿童,现在有着神经系统疾病(例如遗传性帕金森主义)的神经疾病。 SCN1a基因很大,并且将这种限制纳入了最常见的基因治疗载体。我们已经确定了能够携带全长基因的向量。该载体已经用于基因治疗临床试验中,以治疗帕金森氏病的成年患者。 Dravet和Scn1a特别挑战的另一个挑战是在实验室中制作大量基因的极端困难,准备分娩。这挫败了世界各地的基因治疗实验室。我们与一家名为Touchlight Genetics的公司合作,可以使用纯化的酶制作大量DNA。因此,我们希望能够制造大量的SCN1A,这将使我们能够使基因治疗载体治疗并有可能扭转Dravet的原因。首先,触摸灯遗传学将使大量DNA使用,我们可以使含有人类SCN1A基因的慢病毒载体。由此,我们将制作基因治疗载体,并测试它们在菜肴中的脑细胞中起作用(“体外”)。这些细胞将是来自具有突变性非功能SCN1A基因的小鼠的神经元。我们将测量电流(一种称为斑块夹紧的技术),以检测我们的基因治疗是否已成功地传递了SCN1A基因的工作副本,以便细胞可以使工作NAV1.1蛋白质。如果有效,我们将在突变小鼠中测试基因治疗。我们将在出生当天将基因治疗载体注入大脑,并寻找疾病的症状。我们将将它们与正常的,未受影响的小鼠进行比较。我们将研究其大脑以获取任何疾病的证据,并可以测量电流,以查看基因治疗后制造了多少NAV1.1蛋白。我们还将通过将载体注入一些正常小鼠的大脑(携带无SCN1A突变)来检查基因治疗是安全的。该项目旨在开发一种药物来治疗目前无法治愈的毁灭性疾病。如果该项目有效,我们在制造和交付该基因疗法的技术可能会使许多其他儿童疾病受益,而这些儿童疾病以前证明很难。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-efficiency transduction of spinal cord motor neurons by intrauterine delivery of integration-deficient lentiviral vectors.
- DOI:10.1016/j.jconrel.2017.12.029
- 发表时间:2018-03-10
- 期刊:
- 影响因子:0
- 作者:Ahmed SG;Waddington SN;Boza-Morán MG;Yáñez-Muñoz RJ
- 通讯作者:Yáñez-Muñoz RJ
Erratum: Lentiviral vectors can be used for full-length dystrophin gene therapy.
- DOI:10.1038/srep46880
- 发表时间:2017-08-29
- 期刊:
- 影响因子:4.6
- 作者:Counsell JR;Asgarian Z;Meng J;Ferrer V;Vink CA;Howe SJ;Waddington SN;Thrasher AJ;Muntoni F;Morgan JE;Danos O
- 通讯作者:Danos O
Argininosuccinic aciduria fosters neuronal nitrosative stress reversed by Asl gene transfer
精氨基琥珀酸尿症促进 Asl 基因转移逆转神经元亚硝化应激
- DOI:10.1101/348292
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Baruteau J
- 通讯作者:Baruteau J
Urea Cycle Related Amino Acids Measured in Dried Bloodspots Enable Long-Term In Vivo Monitoring and Therapeutic Adjustment.
在干血斑中测量尿素循环相关氨基酸可以实现长期体内监测和治疗调整。
- DOI:10.3390/metabo9110275
- 发表时间:2019
- 期刊:
- 影响因子:4.1
- 作者:Baruteau J
- 通讯作者:Baruteau J
Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects.
- DOI:10.1007/s10545-017-0053-3
- 发表时间:2017-07
- 期刊:
- 影响因子:4.2
- 作者:Baruteau J;Waddington SN;Alexander IE;Gissen P
- 通讯作者:Gissen P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Waddington其他文献
458. Development of Non-Integrating and Site- Specifically Integrating Lentiviral Vectors
- DOI:
10.1016/j.ymthe.2006.08.527 - 发表时间:
2006-01-01 - 期刊:
- 影响因子:
- 作者:
Luis Apolonia;Simon Waddington;Mary Collins;Adrian Thrasher;Nicola Philpott - 通讯作者:
Nicola Philpott
Harmonising Research Reporting in the UK – Experiences and Outputs from UKRISS
- DOI:
10.1016/j.procs.2014.06.034 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:
- 作者:
Brigitte Jörg;Simon Waddington;Richard Jones;Stephen Trowell - 通讯作者:
Stephen Trowell
153. Viral vector and neural stem cell therapies for Batten disease
- DOI:
10.1016/j.ymgme.2009.10.170 - 发表时间:
2010-02-01 - 期刊:
- 影响因子:
- 作者:
Andrew Wong;Ahad Rahim;Sarah Ahmadi;Dafe Uwanogho;Simon Waddington;Jack Price;Jon Cooper - 通讯作者:
Jon Cooper
Simon Waddington的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Waddington', 18)}}的其他基金
Gene therapy for Childhood Parkinsonism: Dopamine transporter deficiency syndrome
儿童帕金森症的基因治疗:多巴胺转运蛋白缺乏综合征
- 批准号:
MR/R015325/1 - 财政年份:2018
- 资助金额:
$ 65.55万 - 项目类别:
Research Grant
Safety and efficacy of perinatal gene therapy for Neuronopathic Gaucher disease
神经病性戈谢病围产期基因治疗的安全性和有效性
- 批准号:
G1000709/1 - 财政年份:2010
- 资助金额:
$ 65.55万 - 项目类别:
Research Grant
Evaluating the impact of coagulation factors on gene delivery using pseudotyped adenoviruses: receptor usage bioavailability and immunogenicity
使用假型腺病毒评估凝血因子对基因传递的影响:受体使用、生物利用度和免疫原性
- 批准号:
BB/E021301/1 - 财政年份:2007
- 资助金额:
$ 65.55万 - 项目类别:
Research Grant
相似国自然基金
T基因长短剪接异构体差异调控细胞周期促进脊索瘤发生发展的机制研究
- 批准号:82303939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新候选基因NAALAD2在高度近视发生发展过程中的作用机理研究
- 批准号:82301223
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
昼夜节律紊乱相关行为与儿童心血管代谢风险发生发展关联及其关键生物钟基因表观遗传调控作用的出生队列研究
- 批准号:82373592
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
应用USH2A基因敲除食蟹猴研究光感受器基质在RP/USH II疾病发生发展中的作用及机制
- 批准号:32370878
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
单细胞多组学整合解析系统性红斑狼疮发展的关键基因
- 批准号:32300534
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Immune-regulating MHC class I-like proteins and colorectal cancer risk
免疫调节 MHC I 类蛋白与结直肠癌风险
- 批准号:
10116347 - 财政年份:2020
- 资助金额:
$ 65.55万 - 项目类别:
MHC and KIR Region Genomics in Psoriasis
银屑病的 MHC 和 KIR 区域基因组学
- 批准号:
9308668 - 财政年份:2015
- 资助金额:
$ 65.55万 - 项目类别:
Exploitation of MICA gene polymorphism for development of personalized medicine in oral cancer patients
利用 MICA 基因多态性开发口腔癌患者的个性化医疗
- 批准号:
24593032 - 财政年份:2012
- 资助金额:
$ 65.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies of HLA Region Genomics in Systemic Sclerosis and Ankylosing Spondyilitis
系统性硬化症和强直性脊柱炎 HLA 区域基因组学研究
- 批准号:
8677681 - 财政年份:2010
- 资助金额:
$ 65.55万 - 项目类别:
Polymeric Matrices with Defined Cell Adhesion
具有明确细胞粘附力的聚合物基质
- 批准号:
8035602 - 财政年份:2010
- 资助金额:
$ 65.55万 - 项目类别: