Developing a Census Based Generative Geodemographic Classification System
开发基于人口普查的生成地理人口分类系统
基本信息
- 批准号:ES/Z50273X/1
- 负责人:
- 金额:$ 42.59万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Leveraging the power of contemporary Artificial Intelligence (AI), this project aims to revolutionize the way in which we can build and use geodemographic classifications. This will do so by enabling more accurate representations of socio-spatial structure and lowering barriers to census based classification development. It also proposes a user-friendly online tool that will allow anyone to easily create their own tailored, research-ready census-based geodemographic data product.Geodemographic classifications provide useful and policy-relevant representations of the complex and multidimensional characteristics of populations living within small geographic areas. Classifications have been created using components of census data since the 1970s, with notable examples in 2001, 2011 and 2021 when the ONS co-produced the first open geodemographic classifications for the UK with academic partners. These "Output Area Classifications" (OAC) have garnered wide use and inspired localised models for specific geographic areas such as London (LOAC).The core methods used to build geodemographic classification have however remained reasonably static since the 1970s, with only modest update. Furthermore, the creation of classifications also remains a reasonably technical process, limiting the ability for others to produce their own classifications, either for localities or specific purposes.This proposal argues that recent developments in AI, and specifically deep learning and machine learning, show great potential to radically transform the power and utility of geodemographic classification. Firstly, through the creation of more accurate representations of socio-spatial structure; and, secondly, through improved geodemographic information systems that significantly reduce barriers to developing new classificationsAims and ObjectivesThe aim of this project is to update the established methods used to build Census based geodemographic classifications through the integration of AI into:The more automated development of output area level input measures that better account for non-linear geographic relationships between variables.A tool to that enables the automated description of clusters.Enabling the creation of a new public facing and online geodemographic classification system that will enable custom census-based classifications to be created.This will be achieved through the following objectives:Evaluating the use of autoencoders as a new method of data reduction for output area level geodemographic input measures.Developing an operational machine learning pipeline that takes output area level census inputs through to cluster creation.Utilising a large language model (LLM: such as integrated into ChatGPT), to develop an automated geodemographic descriptive tool capable of producing accurate textual descriptions of cluster characteristics.Producing a public facing online tool and accompanying training that will guide users to create their own research-ready census-based geodemographic data products.
该项目旨在利用当代人工智能 (AI) 的力量,彻底改变我们构建和使用地理人口统计分类的方式。这将通过更准确地表示社会空间结构并降低基于人口普查的分类开发的障碍来实现。它还提出了一个用户友好的在线工具,允许任何人轻松创建自己定制的、基于研究的人口普查地理人口统计数据产品。地理人口分类为生活在小范围内的人口的复杂和多维特征提供了有用且与政策相关的表示。地理区域。自 20 世纪 70 年代以来,人们一直使用人口普查数据的组成部分来创建分类,其中著名的例子是 2001 年、2011 年和 2021 年,ONS 与学术合作伙伴共同为英国制作了第一个开放的地理人口统计分类。这些“输出区域分类”(OAC) 已获得广泛使用,并激发了伦敦 (LOAC) 等特定地理区域的本地化模型。然而,自 20 世纪 70 年代以来,用于构建地理人口统计分类的核心方法一直保持相当静态,仅进行了适度更新。此外,分类的创建仍然是一个合理的技术过程,限制了其他人为地区或特定目的生成自己的分类的能力。该提案认为,人工智能的最新发展,特别是深度学习和机器学习,显示出巨大的潜力。具有从根本上改变地理人口分类的力量和效用的潜力。首先,通过创建更准确的社会空间结构表示;其次,通过改进地理人口统计信息系统,显着减少开发新分类的障碍目的和目标该项目的目的是通过将人工智能集成到以下内容中,更新用于构建基于人口普查的地理人口统计分类的既定方法:输出区域的更加自动化的开发更好地考虑变量之间非线性地理关系的水平输入测量。一种能够自动描述集群的工具。能够创建一个新的面向公众的在线地理人口统计分类系统,该系统将支持基于自定义人口普查的这将通过以下目标来实现:评估自动编码器作为输出区域级地理人口统计输入测量数据缩减的新方法的使用。开发可操作的机器学习管道,将输出区域级人口普查输入进行聚类利用大型语言模型(LLM:例如集成到 ChatGPT 中)开发一种自动化的地理人口描述工具,能够生成集群特征的准确文本描述。制作面向公众的在线工具和随附的培训将指导用户创建自己的、可用于研究的、基于人口普查的地理人口统计数据产品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex Singleton其他文献
The Rise of Big Spatial Data
大空间数据的兴起
- DOI:
10.1007/978-3-319-45123-7 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
I. Ivan;Alex Singleton;J. Horák;Tomás Inspektor - 通讯作者:
Tomás Inspektor
Mapping Great Britain's semantic footprints through a large language model analysis of Reddit comments
通过对 Reddit 评论的大型语言模型分析来绘制英国的语义足迹
- DOI:
10.1016/j.compenvurbsys.2024.102121 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:0
- 作者:
Cillian Berragan;Alex Singleton;A. Calafiore;Jeremy Morley - 通讯作者:
Jeremy Morley
Mapping cognitive place associations within the United Kingdom through online discussion on Reddit
通过 Reddit 上的在线讨论绘制英国境内的认知位置关联
- DOI:
10.1111/tran.12669 - 发表时间:
2024-01-08 - 期刊:
- 影响因子:3.3
- 作者:
Cillian Berragan;Alex Singleton;A. Calafiore;Jeremy Morley - 通讯作者:
Jeremy Morley
Public Domain GIS, Mapping & Imaging Using Web-based Services †
使用基于网络的服务的公共领域 GIS、测绘和成像 †
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
A. Hudson;Richard Milton;Michael Batty;M. Gibin;Paul A. Longley;Alex Singleton - 通讯作者:
Alex Singleton
Geodemographics and spatial interaction: an integrated model for higher education
地理人口统计学和空间相互作用:高等教育的综合模型
- DOI:
10.1007/s10109-010-0141-5 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:2.9
- 作者:
Alex Singleton;Alan Wilson;O. O’Brien - 通讯作者:
O. O’Brien
Alex Singleton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex Singleton', 18)}}的其他基金
Supporting Post Pandemic Recovery and Resilience through New Forms of Data
通过新形式的数据支持大流行后的恢复和恢复力
- 批准号:
ES/W011255/1 - 财政年份:2022
- 资助金额:
$ 42.59万 - 项目类别:
Research Grant
Using Secondary Data to Measure, Monitor and Visualise Spatio-Temporal Uncertainties in Geodemographics
使用二手数据测量、监测和可视化地理人口统计学中的时空不确定性
- 批准号:
ES/K004719/1 - 财政年份:2013
- 资助金额:
$ 42.59万 - 项目类别:
Research Grant
Leveraging the Google Cloud to Estimate Individual Level CO2 Emissions Linked to the School Commute
利用 Google Cloud 估算与学校通勤相关的个人二氧化碳排放量
- 批准号:
ES/K007459/1 - 财政年份:2013
- 资助金额:
$ 42.59万 - 项目类别:
Research Grant
The e-Resilience of British Retail Centres
英国零售中心的电子弹性
- 批准号:
ES/L003546/1 - 财政年份:2013
- 资助金额:
$ 42.59万 - 项目类别:
Research Grant
Spatial interaction modelling, geodemographics and widening participation in the Higher Education sector?
空间互动模型、地理人口统计学和高等教育领域的扩大参与?
- 批准号:
ES/G001464/1 - 财政年份:2008
- 资助金额:
$ 42.59万 - 项目类别:
Research Grant
相似国自然基金
人口集聚密度、人力资本外部性与企业创新:基于人口普查和专利数据的实证研究
- 批准号:71873123
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
中国第四次人口普查空间信息系统实验研究
- 批准号:48970048
- 批准年份:1989
- 资助金额:5.0 万元
- 项目类别:面上项目
相似海外基金
THIS PURCHASE ORDER INCLUDES SERVICES TO OBTAIN ANNUAL POPULATION ESTIMATES FOR STATE, COUNTIES AND CENSUS TRACTS BASED ON THE COUNTS PRODUCED BY THE US CENSUS BUREAU. THESE SPECIFICALLY-DEVELOPED EST
该采购订单包括根据美国人口普查局的统计数据获取州、县和人口普查区的年度人口估算的服务。
- 批准号:
10974511 - 财政年份:2023
- 资助金额:
$ 42.59万 - 项目类别:
International Population and Agricultural Census Data for Environmental Health Research
用于环境健康研究的国际人口和农业普查数据
- 批准号:
10566349 - 财政年份:2022
- 资助金额:
$ 42.59万 - 项目类别:
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215169 - 财政年份:2022
- 资助金额:
$ 42.59万 - 项目类别:
Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215168 - 财政年份:2022
- 资助金额:
$ 42.59万 - 项目类别:
Standard Grant
Creation of Massive Quasi-Panel Data Based on Census Data, Developing Econometric Methods for Them, and Their Empirical Applications
基于人口普查数据的海量准面板数据的创建、为其开发计量经济学方法及其实证应用
- 批准号:
20H00072 - 财政年份:2020
- 资助金额:
$ 42.59万 - 项目类别:
Grant-in-Aid for Scientific Research (A)