Measuring inequality-driven skills gaps in the UK labour market
衡量英国劳动力市场中不平等驱动的技能差距
基本信息
- 批准号:ES/Z502443/1
- 负责人:
- 金额:$ 17.22万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
To unlock the full potential of the UK economy, structural inequalities within the UK labour market must be addressed. To do this, we must understand how structural inequalities shape the skills that workers within the labour market possess. When hiring processes are impacted by discrimination, where employers factor in characteristics such as gender and ethnicity when choosing between applicants, structural inequalities will be present in the labour market. This discrimination will have long-term effects, as the individuals discriminated against are not only denied an opportunity to advance their earnings, but also an opportunity to develop new skills. This lack of skills development will impact the types of jobs they obtain in the future, and will have a cumulative impact over the course of their careers. While there is a large amount of research regarding how structural inequalities impact earnings (e.g. gender wage gaps), the way they influence worker skills is not well understood. This creates difficulties for policymakers, as programmes promoting worker skills development may be ineffective or have unintended consequences if they do not account for how these inequalities shape skills development. This project will provide insights into how hiring discrimination influences the skills that UK workers possess. Secondarily, it will consider how the impact of hiring discrimination on the skillsets of workers effects outcomes for individuals (e.g. in terms of earnings) and for the industries in which they work (e.g. in terms of lost productivity). These insights will result from simulation experiments performed using a model describing how individuals move between jobs within the UK labour market. By simulating scenarios where hiring discrimination effects are present, and comparing outputs (e.g. worker skillsets, worker earnings) to those produced when hiring discrimination effects are absent, the impact of these effects will be measured. The work has three main objectives: 1) the construction from UK employment data of a labour flow network (LFN) that describes how individuals move between jobs in the UK labour market, 2) the development of a model that simulates the movement of workers between jobs and accurately reproduces the LFN generated in 1), and 3) the use of this model to simulate scenarios where hiring discrimination effects are present/absent, to determine how these effects influence worker skillsets and outcomes like worker earnings and industry productivity. The UK LFN will be constructed using data from the linkage between the Annual Survey of Households and Earnings and the 2011 Census. This project will be the first to quantify the impact of hiring biases on the skillset of workers at a large scale. This has not previously been possible, due to the limitations of conventional methods for assessing the impacts of hiring biases, as well as data availability issues. The results of this research will guide discussions on how to address the impacts of hiring biases on workers and on the economy as a whole. Insights gained from this project will shape the construction of policy interventions aimed at developing worker skills, in service of improving outcomes for workers and the economy. The model developed will also provide a tool for governments and the third sector. Delivering policymakers these insights and tools, so they can institute data-driven policy, is especially important in current times, when governments are facing strong pressures to transform labour markets (e.g. to promote "green" jobs).
为了释放英国经济的全部潜力,必须解决英国劳动力市场内的结构性不平等问题。为此,我们必须了解结构性不平等如何影响劳动力市场中工人所拥有的技能。当招聘过程受到歧视的影响时,雇主在选择申请人时会考虑性别和种族等特征,劳动力市场就会出现结构性不平等。这种歧视将产生长期影响,因为受歧视的个人不仅被剥夺了增加收入的机会,而且也被剥夺了发展新技能的机会。技能发展的缺乏将影响他们未来获得的工作类型,并将在他们的职业生涯中产生累积影响。尽管有大量关于结构性不平等如何影响收入(例如性别工资差距)的研究,但它们影响工人技能的方式尚不清楚。这给决策者带来了困难,因为如果不考虑这些不平等如何影响技能发展,促进工人技能发展的计划可能会无效或产生意想不到的后果。该项目将深入了解招聘歧视如何影响英国工人所拥有的技能。其次,它将考虑招聘歧视对工人技能的影响如何影响个人(例如收入)和他们工作的行业(例如生产力损失)的结果。这些见解将来自使用描述个人如何在英国劳动力市场内的工作之间流动的模型进行的模拟实验。通过模拟存在招聘歧视效应的场景,并将产出(例如工人技能、工人收入)与不存在招聘歧视效应时产生的产出进行比较,可以衡量这些效应的影响。这项工作有三个主要目标:1)根据英国就业数据构建劳动力流动网络(LFN),描述个人如何在英国劳动力市场中的工作之间流动,2)开发一个模型来模拟工人在不同工作之间的流动工作并准确地重现 1) 和 3) 中生成的 LFN,使用该模型来模拟存在/不存在招聘歧视效应的场景,以确定这些效应如何影响工人技能和结果(例如工人收入和行业生产率)。英国 LFN 将使用家庭和收入年度调查与 2011 年人口普查之间的联系数据构建。该项目将是第一个大规模量化招聘偏见对工人技能的影响的项目。由于评估招聘偏见影响的传统方法的局限性以及数据可用性问题,这在以前是不可能的。这项研究的结果将指导如何解决招聘偏见对工人和整个经济的影响的讨论。从该项目中获得的见解将塑造旨在发展工人技能的政策干预措施的构建,以改善工人和经济的成果。开发的模型还将为政府和第三部门提供工具。为政策制定者提供这些见解和工具,以便他们能够制定数据驱动的政策,在当前政府面临着改变劳动力市场(例如促进“绿色”就业)的巨大压力时尤为重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathyrn Fair其他文献
Kathyrn Fair的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Banach空间中关于变分不等式问题的外梯度迭代算法研究
- 批准号:12301159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于时变耦合矩阵不等式的不确定非线性系统全局自适应量化控制研究
- 批准号:62373131
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
二步分层李群上的Hardy不等式及相关问题研究
- 批准号:12301145
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于拉格朗日乘子表示的多项式变分不等式问题数值解法
- 批准号:12301407
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Lp对偶Minkowski问题及相关几何不等式的研究
- 批准号:12301066
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A Data-driven Approach to Identify High Priority Research Topics for Pediatric Hospital Care
一种数据驱动的方法来确定儿科医院护理的高优先级研究主题
- 批准号:
465469 - 财政年份:2022
- 资助金额:
$ 17.22万 - 项目类别:
Operating Grants
Health at Birth and Later Life Outcomes: Evaluating the Returns to Policy-Driven Early Health Investments
出生时的健康状况和以后的生活结果:评估政策驱动的早期健康投资的回报
- 批准号:
10330104 - 财政年份:2021
- 资助金额:
$ 17.22万 - 项目类别:
Health at Birth and Later Life Outcomes: Evaluating the Returns to Policy-Driven Early Health Investments
出生时的健康状况和以后的生活结果:评估政策驱动的早期健康投资的回报
- 批准号:
10371185 - 财政年份:2021
- 资助金额:
$ 17.22万 - 项目类别:
A Data-driven Approach to Identify High Priority Research Topics for Pediatric Hospital Care
一种数据驱动的方法来确定儿科医院护理的高优先级研究主题
- 批准号:
456808 - 财政年份:2021
- 资助金额:
$ 17.22万 - 项目类别:
Operating Grants
Developing a Data-Driven Management System Using Machine Learning and Mixed-Methods Research to Predict Job Turnover Among MentalHealth Professionals
使用机器学习和混合方法研究开发数据驱动的管理系统来预测心理健康专业人员的工作流动率
- 批准号:
10375772 - 财政年份:2019
- 资助金额:
$ 17.22万 - 项目类别: