Survey Data Collection Methods Collaboration: Securing the Future of Social Surveys

调查数据收集方法协作:确保社会调查的未来

基本信息

  • 批准号:
    ES/X014150/1
  • 负责人:
  • 金额:
    $ 304.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The survey data collection community is facing severe challenges in implementing surveys using pre-pandemic approaches. There are knowledge gaps regarding the advantages and disadvantages of different data collection techniques and approaches such as push-to-web, knock-to-nudge and video-interviewing, and particularly in the mixed-mode context. And there is limited capacity both of skilled interviewers and of research professionals. Recent developments are leading to changes in commissioner requirements for face-to-face data collection as well as having implications for fieldwork costs and the role of interviewers. In several areas of survey methodology, the need for development of improved methods and the need to identify and communicate best practice is urgent.The Survey Data Collection Methods Collaboration (SDCMC) is a response to these challenges and aims to deliver a step change in approaches to collecting population survey data in the UK to ensure that it will remain possible to carry out high quality social surveys of the kinds required by the public and academic sectors to monitor and understand society, and to provide an evidence base for policy. It will do this primarily through a rigorous programme of research focused on ensuring large-scale social surveys in the UK can innovate and adapt in a changing environment and continue to deliver high quality and inclusive data. The primary aim of the programme of work is to assess the quality implications of the most important survey design choices relevant to future UK surveys and provide good practice guidance and practical training materials, while a secondary aim is to identify promising ways to improve the capacity and skillset of both interviewers and research professionals and take steps towards making those improvements. The SDCMC will generate a range of research and training outputs and will engage in a programme of dissemination and promotion activities. Outputs will have a strong practical orientation, consisting of good practice guidance for survey design, survey implementation, survey commissioners and survey data users, all backed up by rigorous and well-documented research and with a range of associated activities to ensure that the lessons are disseminated to all relevant stakeholders and, where appropriate, embedded in institutional practice in a timely manner. The project will also seek to enable a whole community dialogue and collaborative response to wider strategic challenges and issues, as well as incorporating a strong training and capacity building component. To realise the vision of the SDCMC will require leadership, commitment and active participation of a broad range of stakeholders including those who commission surveys, those who implement them, those who use survey data and those involved in research and development of survey methods. Constructive dialogue and collaboration will be crucial to the successful delivery of the ambitious range of activities and outputs that we envisage. We have assembled an experienced project team including academics and survey practitioners (39 people from 14 institutions), who are committed to the necessary constructive collaboration and we will engage a wider range of other stakeholders during the course of the grant to ensure that our outputs directly benefit a wide range of audiences. Impact will be achieved not only on survey research and survey practice but also on a broad range of disciplines within the social sciences and beyond which employ social survey data for analysis through raised awareness and knowledge of issues and opportunities.
调查数据收集界在使用大流行前方法实施调查方面面临着严峻的挑战。关于不同数据收集技术和方法(例如推送到网络、点击推动和视频采访)的优缺点,尤其是在混合模式环境中,存在知识差距。熟练的访谈员和研究专业人员的能力都有限。最近的发展导致专员对面对面数据收集的要求发生变化,并对实地工作成本和访谈员的作用产生影响。在调查方法的多个领域,迫切需要开发改进的方法以及确定和交流最佳实践。调查数据收集方法协作 (SDCMC) 是对这些挑战的回应,旨在实现方法的重大变革收集英国的人口调查数据,以确保仍有可能开展公共和学术部门所需的高质量社会调查,以监测和了解社会,并为政策提供证据基础。它将主要通过严格的研究计划来实现这一目标,重点是确保英国的大规模社会调查能够创新并适应不断变化的环境,并继续提供高质量和包容性的数据。该工作计划的主要目的是评估与未来英国调查相关的最重要的调查设计选择的质量影响,并提供良好的实践指导和实用培训材料,而次要目标是确定有希望的方法来提高能力和能力。采访员和研究专业人员的技能,并采取措施进行改进。 SDCMC 将产生一系列研究和培训成果,并将参与传播和推广活动计划。产出将具有很强的实用性,包括对调查设计、调查实施、调查专员和调查数据用户的良好实践指导,所有这些都以严格且有据可查的研究和一系列相关活动为后盾,以确保所学到的教训向所有相关利益攸关方传播,并酌情及时纳入机构实践。该项目还将寻求促进整个社区对话和协作应对更广泛的战略挑战和问题,并纳入强有力的培训和能力建设部分。为了实现 SDCMC 的愿景,需要广泛的利益相关者的领导、承诺和积极参与,包括委托调查的人、实施调查的人、使用调查数据的人以及参与调查方法研究和开发的人。建设性对话与合作对于成功实现我们设想的一系列雄心勃勃的活动和产出至关重要。我们组建了一支经验丰富的项目团队,包括学者和调查从业人员(来自 14 个机构的 39 人),他们致力于必要的建设性合作,我们将在资助过程中与更广泛的其他利益相关者接触,以确保我们的成果直接使广大受众受益。不仅会对调查研究和调查实践产生影响,而且还会对社会科学及其以外的广泛学科产生影响,通过提高对问题和机会的认识和了解,利用社会调查数据进行分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Lynn其他文献

Generalization of Classic Question Order Effects Across Cultures
跨文化经典问题顺序效应的泛化
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Stark;Henning Silber;J. Krosnick;A. Blom;M. Aoyagi;A. Belchior;M. Bošnjak;S. Clement;M. John;G. Jónsdóttir;K. Lawson;Peter Lynn;Johan Martinsson;Ditte Shamshiri;E. Tvinnereim;R. Yu
  • 通讯作者:
    R. Yu
Measurement effects between CAPI and Web questionnaires in the UK Household Longitudinal Study
英国家庭纵向研究中 CAPI 和网络问卷的测量效果
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Vannieuwenhuyze;Peter Lynn
  • 通讯作者:
    Peter Lynn
Towards standardisation of survey outcome categories and response rate calculations
迈向调查结果类别和答复率计算的标准化
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Lynn;Roeland Beerten;J. Laiho;Jean Martin
  • 通讯作者:
    Jean Martin
Sample design for longitudinal surveys
纵向调查样本设计
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul A. Smith;Peter Lynn;D. Elliot
  • 通讯作者:
    D. Elliot
Lack of Replication or Generalization? Cultural Values Explain a Question Wording Effect
缺乏复制或泛化?
  • DOI:
    10.1093/jssam/smab007
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Henning Silber;E. Tvinnereim;T. Stark;A. Blom;J. Krosnick;M. Bošnjak;S. Clement;Anne Cornilleau;Anne;M. John;G. Jónsdóttir;K. Lawson;Peter Lynn;Johan Martinsson;Ditte Shamshiri;Su
  • 通讯作者:
    Su

Peter Lynn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Lynn', 18)}}的其他基金

Survey Resources Network
调查资源网
  • 批准号:
    ES/G034303/1
  • 财政年份:
    2008
  • 资助金额:
    $ 304.55万
  • 项目类别:
    Research Grant
Understanding non-response and reducing non-response bias
了解不回应并减少不回应偏差
  • 批准号:
    ES/E024246/1
  • 财政年份:
    2007
  • 资助金额:
    $ 304.55万
  • 项目类别:
    Research Grant

相似国自然基金

代理模型融合与迁移的分布式数据驱动进化计算方法
  • 批准号:
    62376097
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
番茄时序图像表型数据驱动的生长动态监测与诊断模型构建
  • 批准号:
    32301692
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
混驾环境下知识与数据增强的智能汽车博弈决策研究
  • 批准号:
    62373163
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向数据中心光交换端网融合调度与协同控制技术研究
  • 批准号:
    62301062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
缺失聚类数据的分布式保形预测问题研究
  • 批准号:
    12371265
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
  • 批准号:
    10639360
  • 财政年份:
    2023
  • 资助金额:
    $ 304.55万
  • 项目类别:
Health Access for Native Hawaiians and Pacific Islanders: Determinants of Health Service Utilization and Insurance Coverage
夏威夷原住民和太平洋岛民的健康获取:健康服务利用和保险覆盖范围的决定因素
  • 批准号:
    10682335
  • 财政年份:
    2023
  • 资助金额:
    $ 304.55万
  • 项目类别:
Novel modalities for prostate cancer screening: mast cells as predictors of disease, disease aggressiveness and marks of disease disparity
前列腺癌筛查的新方法:肥大细胞作为疾病、疾病侵袭性和疾病差异标志的预测因子
  • 批准号:
    10650620
  • 财政年份:
    2023
  • 资助金额:
    $ 304.55万
  • 项目类别:
Data Collection, Linkages, Cleaning and Sharing Core
数据采集​​、联动、清洗、共享核心
  • 批准号:
    10774555
  • 财政年份:
    2023
  • 资助金额:
    $ 304.55万
  • 项目类别:
The Health of Aging Parents of Adult Children with Serious Conditions
患有严重疾病的成年子女的年迈父母的健康
  • 批准号:
    10660046
  • 财政年份:
    2023
  • 资助金额:
    $ 304.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了