Sus-Flow: Accelerating Sustainable Continuous Medicine Manufacture via Photo-, Electro-and Thermo-chemistry with Next-Generation Reactors

Sus-Flow:利用下一代反应器通过光化学、电化学和热化学加速可持续连续药物制造

基本信息

  • 批准号:
    EP/Z53299X/1
  • 负责人:
  • 金额:
    $ 252.1万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Achieving Net Zero requires the rapid development and manufacture of medicines in the UK in ways that are both environmentally and financially sustainable. The vision of Sus-Flow, is to greatly increase the sustainability of the manufacture of active pharmaceutical ingredients (APIs) which is a major contributor to environmental footprints of small molecule pharmaceutical products. We will transform the development and manufacture of future medicines by implementing a strategy specifically designed to maximize the industrial impact of our revolutionary Vortex reactor, which has just won a prize in the 2023 RSC Enabling Technologies Competition.Sus-Flow will create a continuous, flexible reactor methodology, underpinned by computational fluid dynamics modelling, that can increase the sustainability of production for a range of APIs, by delivering single pass photochemistry, electrochemistry, and thermal chemistry and by requiring only a minimum amount of solvent for cleaning. Our methodology will largely eliminate the need to redesign processes, as API production is scaled-up along the medicine pipeline. We will:(i) Embed photochemistry and/or electrochemistry, which is currently not widely employed in manufacture to deliver more selective, higher yielding transformations, thereby reducing the number of steps needed to make an API and decreasing generation of the waste.(ii) Deliver photo- and electro-chemistry with simple reactors that can be deployed in multi-step continuous processes, scalable from milligrams to tonnes, thereby providing a single technology that can be used along the whole of development chain from initial discovery to final manufacture. We will integrate these reactors with process analytics (PAT) because successful flow processes need to be underpinned by robust PAT, which can accelerate process development and ensure the continuing quality of the product.(iii) Apply Life Cycle Assessment to quantify the financial, environmental, and resource utilisation aspects of our Vortex reactor concepts. Through a comparison with conventional batch-based production processes, this will help to identify both the commercial case for vortex reactor deployment, as well as providing a comprehensive, parameter-based understanding of the potential sustainability gains that can be achieved by deploying the technology.Our team is highly interdisciplinary comprising chemists with expertise in organic chemistry, reactor design and innovative process analytics, and engineers with skills in fluid modelling, Life Cycle Assessment and sustainability. Our recent reactor innovations are the starting point of Sus-Flow, exploiting toroidal Taylor vortices to achieve excellent mixing and mass transfer that are reflected in very high space-time yields and highly compact reactors. Using computational fluid dynamics and additive manufacture, we will take this Vortex concept to new levels. To ensure manufacturability and implementation, we are partnering with both major pharma and CROs.Aims and Objectives: To transform the Vortex reactor from a successful academic development into an attractive methodology for manufacturing medicines in an industrial context. Specific objectives will be delivered via five packages.1. To demonstrate how the Vortex reactor concept can eliminate major bottlenecks to sustainability in manufacture of key APIs.2. To innovate new capabilities for continuous Vortex reactors.3. To apply effective PAT to monitor, optimise and control continuous processes in Vortex reactors, both to quantify major products and to monitor low concentrations of unwanted by-products.4. To optimise reactor performance via Computational Fluid Dynamics.5. To implement reliable metrics, based on Life Cycle approaches, to identify how Vortex reactors can increase the sustainability of a particular manufacturing route.
实现净零需要在英国以环境和财务可持续的方式快速开发和生产药品。 Sus-Flow 的愿景是大幅提高活性药物成分 (API) 制造的可持续性,这是小分子医药产品环境足迹的主要贡献者。我们将通过实施专门设计的战略来改变未来药物的开发和制造,以最大限度地发挥我们革命性涡流反应器的工业影响,该反应器刚刚在 2023 年 RSC 启用技术竞赛中获奖。Sus-Flow 将创建一个连续、灵活的系统以计算流体动力学模型为基础的反应器方法,通过提供单程光化学、电化学和热化学,并且仅需要最少量的溶剂进行清洁,可以提高一系列 API 生产的可持续性。随着 API 生产沿着医药管道扩大规模,我们的方法将在很大程度上消除重新设计流程的需要。我们将:(i) 嵌入目前在制造中尚未广泛应用的光化学和/或电化学,以提供更具选择性、更高产率的转化,从而减少制造 API 所需的步骤数并减少废物的产生。(ii) )通过简单的反应器提供光化学和电化学,这些反应器可以部署在多步骤连续过程中,可从毫克扩展到吨,从而提供可在从最初发现到最终制造的整个开发链中使用的单一技术。我们将把这些反应器与过程分析 (PAT) 集成,因为成功的流程需要以强大的 PAT 为基础,这可以加速过程开发并确保产品的持续质量。(iii) 应用生命周期评估来量化财务、环境,以及我们涡流反应器概念的资源利用方面。通过与传统的批量生产工艺进行比较,这将有助于确定涡流反应器部署的商业案例,并提供对通过部署该技术可以实现的潜在可持续性收益的全面、基于参数的理解。我们的团队是高度跨学科的,由具有有机化学、反应器设计和创新工艺分析专业知识的化学家以及具有流体建模、生命周期评估和可持续性方面技能的工程师组成。我们最近的反应器创新是 Sus-Flow 的起点,利用环形泰勒涡流来实现出色的混合和传质,这反映在非常高的时空产率和高度紧凑的反应器中。利用计算流体动力学和增材制造,我们将把这个涡流概念提升到新的水平。为了确保可制造性和实施,我们正在与主要制药公司和 CRO 合作。目的和目标: 将涡流反应器从成功的学术开发转变为工业环境中有吸引力的药品制造方法。具体目标将通过五个一揽子计划来实现。1.展示涡流反应器概念如何消除关键 API 制造可持续发展的主要瓶颈。2。创新连续涡流反应器的新功能。3.应用有效的 PAT 来监测、优化和控制涡流反应器中的连续过程,既可以量化主要产品,又可以监测低浓度的不需要的副产品。4.通过计算流体动力学优化反应器性能。5。根据生命周期方法实施可靠的指标,以确定涡流反应器如何提高特定制造路线的可持续性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mike George其他文献

Understanding unusual element-element bond formation and activation: general discussion
  • DOI:
    10.1039/c9fd90071c
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Yutaka Aoki;Thomas Braun;David Davies;Odile Eisenstein;Ian Fairlamb;Natalie Fey;Mike George;Christopher Goult;Alexander Hamilton;Zhiliang Huang;Youichi Ishii;Martin Jakoobi;Shigeki Kuwata;Guy Lloyd-Jones;Jennifer Love;Jason Lynam;Stuart Macgregor;Todd B. Marder;Patrick Morgan;Joseph Mwansa;Aaron Odom;Robin Perutz;Markus Reiher;John Slattery;Maria Talavera;Gilian Thomas;Chun-Yuen Wong
  • 通讯作者:
    Chun-Yuen Wong
Computational and theoretical approaches for mechanistic understanding: general discussion
  • DOI:
    10.1039/c9fd90073j
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Matthias Bauer;Jamie Cadge;David Davies;Derek J. Durand;Odile Eisenstein;Daniel Ess;Natalie Fey;Simone Gallarati;Mike George;Alexander Hamilton;Jeremy Harvey;Ulrich Hintermair;Alison N. Hulme;Youichi Ishii;Vidar R. Jensen;Guy Lloyd-Jones;Jennifer Love;Jason Lynam;Stuart Macgregor;Todd B. Marder;Evert Jan Meijer;Patrick Morgan;Robert H. Morris;Joseph Mwansa;Aaron Odom;Robin Perutz;Markus Reiher;Laurel Schafer;John Slattery;Tom Young
  • 通讯作者:
    Tom Young
Global needs for nitrogen fertilizer to improve wheat yield under climate change.
气候变化下全球需要氮肥来提高小麦产量。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    18
  • 作者:
    Pierre Martre;Sibylle Dueri;J. Guarin;Frank Ewert;H. Webber;Daniel Calderini;Gemma Molero;Matthew Reynolds;Daniel Miralles;Guillermo Garcia;Hamish Brown;Mike George;R. Craigie;J. Cohan;Jean;Gustavo Slafer;Francesco Giunta;Davide Cammarano;R. Ferrise;Thomas Gaiser;Yujing Gao;Z. Hochman;G. Hoogenboom;L. Hunt;K. Kersebaum;C. Nendel;G. Padovan;A. Ruane;A. Srivastava;T. Stella;I. Supit;Peter J. Thorburn;Enli Wang;Joost Wolf;Chuang Zhao;Zhigan Zhao;S. Asseng
  • 通讯作者:
    S. Asseng
Physical methods for mechanistic understanding: general discussion
  • DOI:
    10.1039/c9fd90070e
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Yutaka Aoki;Matthias Bauer;Thomas Braun;Jamie Cadge;David Davies;Derek J. Durand;Odile Eisenstein;Daniel Ess;Ian Fairlamb;Natalie Fey;Simone Gallarati;Mike George;Megan Greaves;Meghan Halse;Alexander Hamilton;Jeremy Harvey;Anthony Haynes;Ulrich Hintermair;Alison N. Hulme;Youichi Ishii;Martin Jakoobi;Vidar R. Jensen;Pierre Kennepohl;Shigeki Kuwata;Aiwen Lei;Guy Lloyd-Jones;Jennifer Love;Kevin Lovelock;Jason Lynam;Stuart Macgregor;Todd B. Marder;Evert Jan Meijer;Patrick Morgan;Robert H. Morris;Joseph Mwansa;David Nelson;Aaron Odom;Robin Perutz;Markus Reiher;Joseph Renny;Jana Roithová;Laurel Schafer;David Schilter;Samuel Scott;John Slattery;James Walton;Jonathan D. Wilden;Chun-Yuen Wong;Tolga Yaman;Tom Young
  • 通讯作者:
    Tom Young
The GL Service: Web Service to Exchange GL String Encoded HLA & KIR Genotypes With Complete and Accurate Allele and Genotype Ambiguity
GL 服务:交换 GL 字符串编码 HLA 的 Web 服务
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Milius;M. Heuer;Mike George;J. Pollack;J. Hollenbach;S. Mack;M. Maiers
  • 通讯作者:
    M. Maiers

Mike George的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mike George', 18)}}的其他基金

Dynamic physicochemical nanoscale imaging at the solid-liquid interface
固液界面动态物理化学纳米级成像
  • 批准号:
    EP/V053884/1
  • 财政年份:
    2021
  • 资助金额:
    $ 252.1万
  • 项目类别:
    Research Grant
Photo-Electro: Transforming Chemical Synthesis, Discovery and Manufacture
光电:改变化学合成、发现和制造
  • 批准号:
    EP/P013341/1
  • 财政年份:
    2017
  • 资助金额:
    $ 252.1万
  • 项目类别:
    Research Grant
Centre for Digital Copyright and Intellectual Property Research in China
中国数字版权与知识产权研究中心
  • 批准号:
    AH/N504300/1
  • 财政年份:
    2014
  • 资助金额:
    $ 252.1万
  • 项目类别:
    Research Grant
Topological Engineering Translation Grant
拓扑工程翻译补助金
  • 批准号:
    EP/H007210/1
  • 财政年份:
    2010
  • 资助金额:
    $ 252.1万
  • 项目类别:
    Research Grant
The Role of Nonstatistical Dynamics in the Chemistry of Reactive Intermediates
非统计动力学在反应中间体化学中的作用
  • 批准号:
    EP/G013330/1
  • 财政年份:
    2009
  • 资助金额:
    $ 252.1万
  • 项目类别:
    Research Grant
Carbon Dioxide and Alkanes as Electron-sink and Source in a Solar Nanocell: towards Tandem Photosynthesis of Carbon Monoxide and Methanol
二氧化碳和烷烃作为太阳能纳米电池中的电子沉和源:一氧化碳和甲醇的串联光合作用
  • 批准号:
    EP/F047789/1
  • 财政年份:
    2008
  • 资助金额:
    $ 252.1万
  • 项目类别:
    Research Grant
Unravelling the photochemistry of organometallic N-heterocyclic carbene complexes
揭示有机金属N-杂环卡宾配合物的光化学
  • 批准号:
    EP/F000650/1
  • 财政年份:
    2007
  • 资助金额:
    $ 252.1万
  • 项目类别:
    Research Grant
NMR and IR Studies of Activation of Small Molecules by Organometallic Complexes
有机金属配合物活化小分子的核磁共振和红外研究
  • 批准号:
    EP/D058031/1
  • 财政年份:
    2006
  • 资助金额:
    $ 252.1万
  • 项目类别:
    Research Grant

相似国自然基金

稀薄流动中耦合宏观/介观加速方法研究
  • 批准号:
    12302382
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
真实流动条件下起爆区扰动实现斜爆轰加速起爆机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
变物性工质微细通道高效多场调控及浮升力/离心力/流动加速耦合机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
管内流场对流动加速腐蚀有机缓蚀膜结构完整性的损伤机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
独立调谐注入器共性研究及其在大功率THz源小型化中的应用
  • 批准号:
    11905074
  • 批准年份:
    2019
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Tele-FootX: Virtually Supervised Tele-Exercise Platform for Accelerating Plantar Wound Healing
Tele-FootX:用于加速足底伤口愈合的虚拟监督远程锻炼平台
  • 批准号:
    10701324
  • 财政年份:
    2023
  • 资助金额:
    $ 252.1万
  • 项目类别:
Accelerating Manycore Fluid Flow Predictions Including Wave/Ship Motions Using Parareal
使用 Parareal 加速众核流体流动预测,包括波浪/船舶运动
  • 批准号:
    RGPIN-2017-04247
  • 财政年份:
    2022
  • 资助金额:
    $ 252.1万
  • 项目类别:
    Discovery Grants Program - Individual
Accelerating Manycore Fluid Flow Predictions Including Wave/Ship Motions Using Parareal
使用 Parareal 加速众核流体流动预测,包括波浪/船舶运动
  • 批准号:
    RGPIN-2017-04247
  • 财政年份:
    2022
  • 资助金额:
    $ 252.1万
  • 项目类别:
    Discovery Grants Program - Individual
Accelerating Medicines Partnership-Autoimmune and Immunologic Disease Tissue Research Core Admin Supplement: Preclinical Studies in Sjogren's
加速药物合作 - 自身免疫和免疫疾病组织研究核心管理补充:干燥病的临床前研究
  • 批准号:
    10834635
  • 财政年份:
    2022
  • 资助金额:
    $ 252.1万
  • 项目类别:
Research on momentum transfer around a rotating cylinder in a flow
流动中旋转圆柱体动量传递研究
  • 批准号:
    21H01540
  • 财政年份:
    2021
  • 资助金额:
    $ 252.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了