Spectroscopic Detection of Magnetic Scattering and Quasiparticles at Atomic Resolution in the Electron Microscope

电子显微镜中原子分辨率的磁散射和准粒子的光谱检测

基本信息

  • 批准号:
    EP/Z531194/1
  • 负责人:
  • 金额:
    $ 163.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Semiconductor devices that have revolutionised science and technology are based on the ability to control the transport of electron charges in nanoscale-sized materials. However, the miniaturisation of transistors, the building blocks of logic devices, is reaching a bottleneck and the speed of charge transport is reaching its physical limits, highlighting the need for new device designs. Electrons being used in electronic devices carry an additional piece of information called spin. So-called spintronic devices exploit this electron spin, in addition to its charge, to transport information more quickly and effectively. As a result, they have the potential to overcome the limitations of conventional electronics. A way to implement this concept is through the creation in spintronic materials of 'information waves', periodic oscillations of the spin of charge carriers, which propagate within the devices. These spin waves are also called 'magnons'. In order to effectively use these magnons in new electronics, it is essential to visualise and understand how they are generated and transferred within spintronic devices across interfaces or contacts and thus shed light on how effectively information can be carried. Up to now, no experimental tool or method has been available to provide this information at the relevant nano- or even atomic scale.Era-defining technological and methodological developments in the last decade in the field of electron microscopy have seen the energy resolution of current-generation instruments reach the sub-5meV level while retaining atomic-scale spatial resolution. Such ground-breaking capabilities should enable the detection of energy losses incurred by electron probes scattered within samples being observed when exciting magnons, which lie in this meV energy range. This International Centre-to-Centre Collaborative project thus assembles a team whose research and expertise are at the forefront of scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS), with extensive experience in generating knowledge, tools, and methodologies in the fields of advanced electron microscopy and modelling of electron scattering, with a view to demonstrate magnon EEL spectroscopy in the electron microscope.The project aims to develop the experimental and theoretical tools that will allow us to detect and visualise magnons at the nano and atomic scale with electron-based spectroscopy. A main goal is to fingerprint unambiguously the spectroscopic signature of magnons in materials for spintronic applications and to correlate this observation with the wealth of structural and chemical information that analytical electron microscopy can provide. State-of-the-art computational tools will allow us to guide and design experimental parameters and to rationalised experimental results. This project will provide a new way of studying the fundamentals of magnetic ordering and spin wave excitations in the solid state and it will provide a complete picture of magnetic and electronic properties of materials and devices.
彻底改变科学技术的半导体器件基于控制纳米级材料中电子电荷传输的能力。然而,作为逻辑器件构建模块的晶体管的小型化正在达到瓶颈,电荷传输的速度也达到了其物理极限,这凸显了对新器件设计的需求。电子设备中使用的电子携带一种称为自旋的附加信息。所谓的自旋电子器件除了利用其电荷外,还利用电子自旋来更快速、更有效地传输信息。因此,它们有可能克服传统电子产品的局限性。实现这一概念的一种方法是通过在自旋电子材料中创建“信息波”,即在器件内传播的电荷载流子自旋的周期性振荡。这些自旋波也称为“磁振子”。为了在新电子产品中有效地使用这些磁振子,必须可视化并理解它们如何在自旋电子器件中跨接口或接触产生和传输,从而揭示如何有效地携带信息。到目前为止,还没有实验工具或方法可以在相关的纳米甚至原子尺度上提供这些信息。过去十年电子显微镜领域划时代的技术和方法的发展已经见证了当前的能量分辨率一代仪器达到亚 5meV 水平,同时保持原子级空间分辨率。这种突破性的能力应该能够检测在激发磁振子时所观察到的样品中分散的电子探针所引起的能量损失,磁振子位于这个兆电子伏的能量范围内。因此,这个国际中心间合作项目组建了一个团队,其研究和专业知识处于扫描透射电子显微镜(STEM)和电子能量损失光谱(EELS)的前沿,在生成知识、工具和方法方面拥有丰富的经验。先进电子显微镜和电子散射建模领域,以期在电子显微镜中演示磁振子 EEL 光谱。该项目旨在开发实验和理论工具,使我们能够在纳米和原子尺度上检测和可视化磁振子和基于电子的光谱学。主要目标是明确地识别自旋电子应用材料中磁振子的光谱特征,并将该观察结果与分析电子显微镜可以提供的丰富的结构和化学信息相关联。最先进的计算工具将使我们能够指导和设计实验参数并使实验结果合理化。该项目将为研究固态磁有序和自旋波激发的基本原理提供一种新方法,并将提供材料和器件的磁和电子特性的完整图像。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vlado Lazarov其他文献

Vlado Lazarov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vlado Lazarov', 18)}}的其他基金

Aberration-Corrected Scanning Transmission Electron Microscope with atomic resolution spectroscopy under controlled environmental conditions: AC-eSTEM
在受控环境条件下具有原子分辨率光谱的像差校正扫描透射电子显微镜:AC-eSTEM
  • 批准号:
    EP/S033394/1
  • 财政年份:
    2019
  • 资助金额:
    $ 163.78万
  • 项目类别:
    Research Grant
Half-metallic ferromagnets: materials fundamentals for next-generation spintronics
半金属铁磁体:下一代自旋电子学的材料基础
  • 批准号:
    EP/K03278X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 163.78万
  • 项目类别:
    Research Grant
Half metal oxides: In search for 100% spin polarised materials
半%20金属%20氧化物:%20In%20search%20for%20100%%20spin%20极化%20材料
  • 批准号:
    EP/K013114/1
  • 财政年份:
    2013
  • 资助金额:
    $ 163.78万
  • 项目类别:
    Research Grant

相似国自然基金

高速钢轨应力和微裂纹的磁信号映射机制及在线检测方法研究
  • 批准号:
    52305588
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于磁控介导电传感体系对水产品中氯丙嗪的增敏靶向检测机制研究
  • 批准号:
    32302222
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向超微生物物质检测应用的磁致伸缩微机械换能器件基础问题研究
  • 批准号:
    62304003
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
挥发性有机物高灵敏软电离检测的磁约束-质子转移反应质谱新技术和方法研究
  • 批准号:
    22376198
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于细胞表面结合位点放大的循环肿瘤细胞高效磁富集分离和检测方法的研究
  • 批准号:
    82302645
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Enhanced Deuterium Metabolic Imaging (DMI) of Metabolic Reprogramming in Brain Tumors
脑肿瘤代谢重编程的增强氘代谢成像 (DMI)
  • 批准号:
    10593853
  • 财政年份:
    2023
  • 资助金额:
    $ 163.78万
  • 项目类别:
Real time imaging of immune cells and glutamate dynamics by PET and metabolic MRI
通过 PET 和代谢 MRI 对免疫细胞和谷氨酸动态进行实时成像
  • 批准号:
    10894490
  • 财政年份:
    2023
  • 资助金额:
    $ 163.78万
  • 项目类别:
Development of multinuclear MRI for image guided therapy of glioma patients
开发用于神经胶质瘤患者图像引导治疗的多核 MRI
  • 批准号:
    10655918
  • 财政年份:
    2023
  • 资助金额:
    $ 163.78万
  • 项目类别:
Perfluoroalkyl substances and non-alcoholic fatty liver disease in children: Leveraging magnetic resonance imaging to unravel potential mechanisms and exposure mixture effects
全氟烷基物质与儿童非酒精性脂肪肝:利用磁共振成像揭示潜在机制和暴露混合物效应
  • 批准号:
    10646759
  • 财政年份:
    2023
  • 资助金额:
    $ 163.78万
  • 项目类别:
Hyperpolarized 13C metabolic imaging in an endovascular swine model of ischemic stroke
缺血性中风血管内猪模型的超极化 13C 代谢成像
  • 批准号:
    10726555
  • 财政年份:
    2023
  • 资助金额:
    $ 163.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了