Computational topology and geometry for systems biology

系统生物学的计算拓扑和几何

基本信息

  • 批准号:
    EP/Z531224/1
  • 负责人:
  • 金额:
    $ 159.89万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The proposed project focuses on creating novel mathematical tools to analyse complex datasets in biology using topology, geometry, and machine learning. Building upon the success of the Centre for Topological Data Analysis (TDA), this new initiative aims to establish and strengthen collaborations with researchers in Saxony, Germany, specifically at the Max Planck Institute for Mathematics in the Sciences (MPI-MiS) and the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG). These institutes are closely associated with the Center for Scalable Data Analytics and Artificial Intelligence in Dresden/Leipzig (ScaDS.AI) and the Centre for Systems Biology Dresden (CSBD). These institutions are at the forefront of cutting-edge research in computational geometry, machine learning, and systems biology. The project's main objective is to advance topological data analysis (TDA) through the integration of data science techniques, algebraic and geometric methods, and topology. By working closely with experimentalists and modellers at MPI-CBG, the project aims to push the boundaries of TDA and apply it to biological systems, creating an iterative cycle between real-world applications and methodological advancements. This collaborative programme seeks to uncover shapes and structures within biological data, ultimately leading to groundbreaking insights in molecular biology.Biological datasets are often complex, noisy, and high-dimensional. Traditional methods, such as clustering or regression, have limitations when it comes to capturing the intricate shape of the data and cannot identify higher-order structures. TDA offers a unique approach to understanding multiscale systems by characterising and quantifying their inherent shape or structure. While TDA has already demonstrated its effectiveness in medicine, including applications in tumour-immune interactions and vascular networks--even led to the discovery of new subtypes of breast cancer-- the focus of this proposal is to expand the field of topological data analysis (TDA) to handle biological datasets encountered in (spatial) systems biology. Extending the mathematics in TDA will provide a versatile toolkit that can handle a wide range of data with multiple parameters. Through close collaboration with experimentalists and modellers at the Max Planck Institute of Molecular Cell Biology and Genetics, the project will have access to diverse biological datasets, enabling the team to push the theoretical, computational, and practical boundaries of TDA.The core focus of this programme is the expansion of TDA with other areas of mathematics and data science techniques. This multidisciplinary approach will create an iterative cycle between practical applications and methodological advancements. Through collaborations with leading researchers in applied algebraic geometry, differential geometry, and the AI/TDA interface, the project aims to develop new theoretical frameworks, case studies, and software. These resources will demonstrate the immediate applicability of topological and geometric tools for data analysis.In summary, the programme will contribute to the expansion of the UK topological data analysis (TDA) community and pave the way for future involvement in larger-scale projects. The proposed research project aims to develop innovative mathematical approaches for analysing spatial and temporal multi-parameter biological datasets. By harnessing the power of topology, geometry, and machine learning, the project seeks to unlock mechanistic insights and reveal structures within biological systems and revolutionise our understanding of biology. The collaboration with international research centres will maximise impact.
拟议项目的重点是创建新颖的数学工具,利用拓扑、几何和机器学习来分析生物学中的复杂数据集。在拓扑数据分析中心 (TDA) 成功的基础上,这一新举措旨在建立和加强与德国萨克森州研究人员的合作,特别是马克斯普朗克科学研究所 (MPI-MiS) 和马克斯普朗克数学研究所的研究人员的合作。普朗克分子细胞生物学和遗传学研究所 (MPI-CBG)。这些研究所与德累斯顿/莱比锡可扩展数据分析和人工智能中心 (ScaDS.AI) 和德累斯顿系统生物学中心 (CSBD) 密切相关。这些机构处于计算几何、机器学习和系统生物学领域前沿研究的前沿。该项目的主要目标是通过数据科学技术、代数和几何方法以及拓扑的集成来推进拓扑数据分析(TDA)。通过与 MPI-CBG 的实验人员和建模人员密切合作,该项目旨在突破 TDA 的界限并将其应用到生物系统中,在现实世界的应用和方法进步之间创建一个迭代循环。该合作项目旨在揭示生物数据中的形状和结构,最终带来分子生物学方面的突破性见解。生物数据集通常是复杂的、嘈杂的和高维的。传统方法(例如聚类或回归)在捕获数据的复杂形状时存在局限性,并且无法识别高阶结构。 TDA 通过表征和量化多尺度系统的固有形状或结构,提供了一种理解多尺度系统的独特方法。虽然 TDA 已经证明了其在医学上的有效性,包括在肿瘤免疫相互作用和血管网络中的应用,甚至导致了乳腺癌新亚型的发现,但该提案的重点是扩大拓扑数据分析领域。 TDA)来处理(空间)系统生物学中遇到的生物数据集。扩展 TDA 中的数学将提供一个多功能工具包,可以处理具有多个参数的广泛数据。通过与马克斯·普朗克分子细胞生物学和遗传学研究所的实验学家和建模师密切合作,该项目将能够访问不同的生物数据集,使团队能够突破 TDA 的理论、计算和实践界限。该项目的核心焦点计划是 TDA 与数学和数据科学技术其他领域的扩展。这种多学科方法将在实际应用和方法进步之间创建一个迭代循环。通过与应用代数几何、微分几何和 AI/TDA 接口领域的领先研究人员合作,该项目旨在开发新的理论框架、案例研究和软件。这些资源将证明拓扑和几何工具对数据分析的直接适用性。总之,该计划将有助于扩大英国拓扑数据分析(TDA)社区,并为未来参与更大规模的项目铺平道路。拟议的研究项目旨在开发创新的数学方法来分析空间和时间多参数生物数据集。通过利用拓扑、几何和机器学习的力量,该项目旨在解锁机械见解并揭示生物系统内的结构,并彻底改变我们对生物学的理解。与国际研究中心的合作将最大限度地发挥影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heather Harrington其他文献

Algebraic identifiability of partial differential equation models
偏微分方程模型的代数可辨识性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Helen Byrne;Heather Harrington;A. Ovchinnikov;G. Pogudin;Hamid Rahkooy;Pedro Soto
  • 通讯作者:
    Pedro Soto
Kuramoto Oscillators: algebraic and topological aspects
Kuramoto 振荡器:代数和拓扑方面
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heather Harrington;Hal Schenck;Mike Stillman
  • 通讯作者:
    Mike Stillman
“Dancer as collaborator, co-author, co-owner, co-creator: power relations between dancer and choreographer”
“舞者作为合作者、共同作者、共同所有者、共同创造者:舞者和编舞者之间的权力关系”
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Heather Harrington
  • 通讯作者:
    Heather Harrington
Consumer dance identity: the intersection between competition dance, televised dance shows and social media
消费者舞蹈身份:竞赛舞蹈、电视舞蹈节目和社交媒体之间的交集
  • DOI:
    10.1080/14647893.2020.1798394
  • 发表时间:
    2020-05-03
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Heather Harrington
  • 通讯作者:
    Heather Harrington

Heather Harrington的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heather Harrington', 18)}}的其他基金

Life and physical sciences interface: Topological underpinnings of data with application to biological sciences
生命与物理科学接口:数据的拓扑基础及其在生物科学中的应用
  • 批准号:
    BB/X004244/1
  • 财政年份:
    2022
  • 资助金额:
    $ 159.89万
  • 项目类别:
    Research Grant
RS Fellow - EPSRC grant (2016): Algebraic and topological approaches for genomic data in molecular biology
RS 研究员 - EPSRC 资助(2016):分子生物学中基因组数据的代数和拓扑方法
  • 批准号:
    EP/R005125/1
  • 财政年份:
    2017
  • 资助金额:
    $ 159.89万
  • 项目类别:
    Fellowship
Models of spatio-temporal reaction systems with applications to systems and synthetic biology
时空反应系统模型及其在系统和合成生物学中的应用
  • 批准号:
    EP/K041096/1
  • 财政年份:
    2014
  • 资助金额:
    $ 159.89万
  • 项目类别:
    Fellowship
Graduate Research Fellowship Program
研究生研究奖学金计划
  • 批准号:
    0739138
  • 财政年份:
    2007
  • 资助金额:
    $ 159.89万
  • 项目类别:
    Fellowship Award

相似国自然基金

三维拓扑结构支架在定向引导神经干细胞修复耳蜗螺旋神经节中的作用及机制研究
  • 批准号:
    82301331
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
瞬态高温环境下力学承载-防隔热一体化结构拓扑优化方法研究
  • 批准号:
    12302148
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高阶读数的拓扑关联结构域识别和比对方法研究
  • 批准号:
    62372156
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
低维磁性材料中新奇拓扑磁结构表征及电学调控物理机制研究
  • 批准号:
    12374099
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于锁模磁岛拓扑结构调控的比压阿尔芬本征模激发机理研究
  • 批准号:
    12375217
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Development and application of a high-fidelity computational model of diabetic retinopathy hemodynamics: Coupling single-cell biophysics with retinal vascular network topology and complexity
糖尿病视网膜病变血流动力学高保真计算模型的开发和应用:将单细胞生物物理学与视网膜血管网络拓扑和复杂性耦合
  • 批准号:
    10279068
  • 财政年份:
    2021
  • 资助金额:
    $ 159.89万
  • 项目类别:
Development and application of a high-fidelity computational model of diabetic retinopathy hemodynamics: Coupling single-cell biophysics with retinal vascular network topology and complexity
糖尿病视网膜病变血流动力学高保真计算模型的开发和应用:将单细胞生物物理学与视网膜血管网络拓扑和复杂性耦合
  • 批准号:
    10688753
  • 财政年份:
    2021
  • 资助金额:
    $ 159.89万
  • 项目类别:
Statistical and Computational Aspects of Geometry- and Topology-Based Machine Learning
基于几何和拓扑的机器学习的统计和计算方面
  • 批准号:
    2053918
  • 财政年份:
    2021
  • 资助金额:
    $ 159.89万
  • 项目类别:
    Continuing Grant
CAREER: Mapping Problems in Computational Geometry and Topology
职业:计算几何和拓扑中的绘图问题
  • 批准号:
    1941086
  • 财政年份:
    2020
  • 资助金额:
    $ 159.89万
  • 项目类别:
    Continuing Grant
Computational study of neural information processing for perceptual constancy under changing environments
变化环境下感知恒定性的神经信息处理的计算研究
  • 批准号:
    18K11485
  • 财政年份:
    2018
  • 资助金额:
    $ 159.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了