Privacy-preserving machine learning through secure management of data's lifecycle in distributed systems: REMINDER

通过安全管理分布式系统中的数据生命周期来保护隐私的机器学习:提醒

基本信息

  • 批准号:
    EP/Y036301/1
  • 负责人:
  • 金额:
    $ 40.2万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The Artificial Intelligence (AI) becomes ubiquitous and leading a technological paradigm shift. Some of the main objectives set out in the United Nations' Sustainable Development Goals (SDGs) for 2030 will require to be addressed through the responsible use of AI techniques to transform data into real knowledge for the benefit of our society. This trend is being driven through an increasing degree of hyperconnectivity based on the integration of distributed systems into the Internet infrastructure mainly based on the deployment of Internet of Things (IoT) technologies as well as 5G/6G infrastructures. The integration of such systems will enable new data-based services in our surrounding environment, e.g., in the context of sustainable cities and communities or advanced eHealth services. To provide these services effectively and efficiently, a key aspect is the management of security and privacy throughout the data's lifecycle in a way that ensures the services are based on trustworthy information provided by legitimate systems. In this direction, this project (REMINDER) will design a decentralized and secure approach for the access and processing of data produced by distributed systems. In particular, REMINDER will design and implement an edge-based architecture for applications using Federated Learning (FL) that will be accessible to resource-constrained end nodes. Unlike most current deployments, the architecture will enable a collaborative model creation without the need to share the data itself. This architecture will consider the high degree of dynamism of decentralized and distributed systems by designing a node selection approach for the training process in the FL architecture while considering end systems' features (e.g., device status or battery level), as well as their evolution during their life cycle. Additionally, REMINDER will address some of the major security and privacy challenges associated with the use of decentralized Machine Learning (ML) approaches, such as FL. In this direction, the project will analyze the use of cryptographic techniques, such as Differential Privacy (DP) and Secure Multi- Party Computation (SMPC) for the sake of reaching the right balance between the effectiveness provided by ML techniques and the level of privacy being guaranteed. Data privacy will be considered in rest, transit, and while processing. The proposed solutions will be preventive and reactive. They will also ensure the privacy preserving aspects are being compliant with existing data protection regulations, such as the GDPR over the data lifecycle. REMINDER will also address some of the major security attacks in FL environments by designing and implementing an authentication protocol to ensure that only legitimate systems are able to take part in the collaborative creation process of ML models. Moreover, REMINDER will demonstrate the feasibility of the proposed research through two main use cases around eHealth and smart buildings.
人工智能 (AI) 变得无处不在,并引领技术范式转变。联合国 2030 年可持续发展目标 (SDG) 中规定的一些主要目标需要通过负责任地使用人工智能技术将数据转化为真正的知识来实现​​,以造福我们的社会。这一趋势是通过日益增强的超连接性推动的,这种超连接性基于将分布式系统集成到互联网基础设施中,主要基于物联网 (IoT) 技术以及 5G/6G 基础设施的部署。此类系统的集成将为我们周围的环境提供新的基于数据的服务,例如在可持续城市和社区或先进的电子医疗服务的背景下。为了有效和高效地提供这些服务,一个关键方面是在整个数据生命周期中管理安全和隐私,确保服务基于合法系统提供的可信信息。在这个方向上,该项目(REMINDER)将设计一种去中心化且安全的方法来访问和处理分布式系统产生的数据。特别是,REMINDER 将为使用联邦学习 (FL) 的应用程序设计和实现基于边缘的架构,资源受限的终端节点可以访问该架构。与大多数当前部署不同,该架构将支持协作模型创建,而无需共享数据本身。该架构将考虑去中心化和分布式系统的高度动态性,通过为 FL 架构中的训练过程设计节点选择方法,同时考虑终端系统的特征(例如设备状态或电池电量)以及它们在训练过程中的演变。他们的生命周期。此外,REMINDER 将解决与使用去中心化机器学习 (ML) 方法(例如 FL)相关的一些主要安全和隐私挑战。在这个方向上,该项目将分析加密技术的使用,例如差分隐私(DP)和安全多方计算(SMPC),以便在机器学习技术提供的有效性和隐私级别之间达到适当的平衡得到保证。在休息、传输和处理过程中将考虑数据隐私。所提出的解决方案将是预防性和反应性的。他们还将确保隐私保护方面符合现有的数据保护法规,例如整个数据生命周期的 GDPR。 REMINDER 还将通过设计和实现身份验证协议来解决 FL 环境中的一些主要安全攻击,以确保只有合法系统才能参与 ML 模型的协作创建过程。此外,REMINDER 将通过围绕电子医疗和智能建筑的两个主要用例来展示拟议研究的可行性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Djamel Djenouri其他文献

Djamel Djenouri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于水岩作用数值模拟的膏盐岩-碳酸盐岩体系储层保存机制研究——以鄂尔多斯盆地奥陶系马家沟组为例
  • 批准号:
    42302139
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于现代沉积物中长石溶孔保存探究中深层碎屑岩储层长石埋藏溶蚀规模
  • 批准号:
    42372157
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
营养胶囊保存的SMILE透镜激光磨镶后的光学与力学效应研究
  • 批准号:
    82371096
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
光热导电高分子-抗冻多肽二维纳米冷冻剂用于类器官冷冻保存的研究
  • 批准号:
    22305141
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
红树林沉积物中糖类的硫化及其保存机制研究
  • 批准号:
    42363010
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2247892
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2247891
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了