A hybrid Deep Learning-assisted Finite Element technique to predict dynamic failure evolution in advanced ceramics (DeLFE)

用于预测先进陶瓷动态失效演化的混合深度学习辅助有限元技术 (DeLFE)

基本信息

  • 批准号:
    EP/Y004671/1
  • 负责人:
  • 金额:
    $ 20.41万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Engineers use computer tools to design complex structural components, be they airplane wings or high-rise buildings. The most common technique underneath such computer tools is finite element analysis (FEA). For not-so-demanding structural applications, simple linear elastic finite element models are sufficient to conduct the design process. However, when it comes to advanced structural applications such as gas turbine blades or nuclear reactor components, they experience severe loading conditions, which are high temperatures and/or high-pressure dynamic loads (impact). For such high-temperature applications, advanced structural ceramics and their composites are the natural choices of materials. Designing these structures made of ceramics against impact is non-trivial as it involves complex damage evolution mechanisms. Hence, engineers conduct a variety of experiments and large-scale computational (FEA) simulations to understand their behaviour. However, these experiments and simulations are time-consuming and costly. Most often, they have to conduct simple linear elastic FEA models which are far less time-consuming but do not account for complex damage mechanisms. Such a limitation naturally results in a sub-optimal design of these advanced structural components. One of the ways to overcome this challenge is to exploit the potential of artificial intelligence (AI) techniques to see if finite element computer simulations can be accelerated and yet reliably predict complex damage mechanisms. The proposed research addresses this industry-relevant problem and aims to develop an AI-driven accelerated FEA tool to simulate dynamic brittle fracture evolution in advanced structural ceramics. When we use AI models for such physical problems, the inherent problem is their reliability as they are often termed as 'black box modes' leading to uncertainties in their predictions. In this perspective, the proposed project takes a hybrid approach whereby data-driven deep learning models are adaptively combined with physics-based traditional FEA models in an integrated framework, thoroughly validated using experimental testing. Such a hybrid strategy aids in achieving accelerated, yet reliable simulations for complex physical problems such as the dynamic damage evolution in structures made of brittle ceramic materials. More specifically, engineers or end-users can specify the level of the desired accuracy depending on the design stage of the structural component. The adaptive simulation framework will then appropriately hybridise deep learning-based predictor and traditional FEA, resulting in an optimal damage prediction balancing the computational costs and accuracy. The global objective is to equip engineers with the necessary simulation tools whereby both accuracy and speed are ensured. This helps in transitioning the current industrial approach of using simplistic models into adopting AI-driven models that captures complex physical mechanisms, ultimately leading to the efficient and safe design of advanced structural components.
工程师使用计算机工具设计复杂的结构部件,无论是飞机机翼还是高层建筑。此类计算机工具最常用的技术是有限元分析 (FEA)。对于要求不那么高的结构应用,简单的线弹性有限元模型足以进行设计过程。然而,当涉及燃气轮机叶片或核反应堆部件等先进结构应用时,它们会经历严峻的载荷条件,即高温和/或高压动态载荷(冲击)。对于此类高温应用,先进结构陶瓷及其复合材料是材料的自然选择。设计这些由陶瓷制成的抗冲击结构并非易事,因为它涉及复杂的损伤演化机制。因此,工程师进行各种实验和大规模计算 (FEA) 模拟来了解它们的行为。然而,这些实验和模拟既耗时又昂贵。大多数情况下,他们必须建立简单的线弹性有限元分析模型,这种模型耗时少得多,但无法考虑复杂的损坏机制。这种限制自然会导致这些先进结构部件的设计不理想。克服这一挑战的方法之一是利用人工智能 (AI) 技术的潜力,看看是否可以加速有限元计算机模拟,并可靠地预测复杂的损坏机制。拟议的研究解决了这一行业相关问题,旨在开发一种人工智能驱动的加速有限元分析工具来模拟先进结构陶瓷的动态脆性断裂演化。当我们使用人工智能模型来解决此类物理问题时,固有的问题是它们的可靠性,因为它们通常被称为“黑匣子模式”,导致其预测存在不确定性。从这个角度来看,拟议的项目采用了一种混合方法,将数据驱动的深度学习模型与基于物理的传统有限元分析模型自适应地结合在一个集成框架中,并通过实验测试进行彻底验证。这种混合策略有助于对复杂的物理问题(例如脆性陶瓷材料结构的动态损伤演化)实现加速且可靠的模拟。更具体地说,工程师或最终用户可以根据结构部件的设计阶段指定所需精度的水平。然后,自适应模拟框架将适当地混合基于深度学习的预测器和传统的有限元分析,从而产生平衡计算成本和准确性的最佳损伤预测。全球目标是为工程师配备必要的仿真工具,从而确保准确性和速度。这有助于将当前使用简单模型的工业方法转变为采用人工智能驱动的模型来捕获复杂的物理机制,最终实现先进结构组件的高效和安全设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sathiskumar Anusuya Ponnusami其他文献

Sathiskumar Anusuya Ponnusami的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于深度学习的深地叠前时空域地震子波提取方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于数物融合深度学习的深大基坑施工灾变风险在线预测与防控研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向超深储层预测的稀疏变换学习与低秩联合正则化叠前地震反演
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
面向深空探测的AI网络集群高效智能信号处理关键理论与方法的研究
  • 批准号:
    61901152
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于三支决策和强化学习的深空探测器非预期故障自主诊断与系统重构研究
  • 批准号:
    61903015
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
  • 批准号:
    10714540
  • 财政年份:
    2023
  • 资助金额:
    $ 20.41万
  • 项目类别:
CRII: OAC: High-Efficiency Serverless Computing Systems for Deep Learning: A Hybrid CPU/GPU Architecture
CRII:OAC:用于深度学习的高效无服务器计算系统:混合 CPU/GPU 架构
  • 批准号:
    2153502
  • 财政年份:
    2022
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Standard Grant
A type 2 hybrid effectiveness-implementation trial to evaluate a population health combination intervention to meet HIV testing, linkage, and viral suppression goals in coastal Alabama
一项 2 型混合有效性实施试验,旨在评估人口健康组合干预措施,以实现阿拉巴马州沿海地区的 HIV 检测、关联和病毒抑制目标
  • 批准号:
    10461324
  • 财政年份:
    2022
  • 资助金额:
    $ 20.41万
  • 项目类别:
A new hybrid modeling framework combining biophysics and deep learning to predict and optimize peripheral neuromodulation outcomes in lower urinary tract disease
一种新的混合建模框架,结合生物物理学和深度学习来预测和优化下尿路疾病的周围神经调节结果
  • 批准号:
    10705188
  • 财政年份:
    2022
  • 资助金额:
    $ 20.41万
  • 项目类别:
Hybrid Deep Learning Architectures for the Analysis of Multi-Source Spatiotemporal Biomedical Data
用于分析多源时空生物医学数据的混合深度学习架构
  • 批准号:
    RGPIN-2020-06457
  • 财政年份:
    2022
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了