Electro-fermentation process design for efficient CO2 conversion into value-added products

电发酵工艺设计可有效地将二氧化碳转化为增值产品

基本信息

  • 批准号:
    EP/Y002482/1
  • 负责人:
  • 金额:
    $ 21.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The chemical industries are heavily reliant on crude oil, a finite and unsustainable resource with global price fluctuations with negative impact on global economies. Depleting petrochemical reserves, coupled with unprecedented rise in global carbon emissions triggering severe weather events, represent the driving forces behind the development of environmentally sound, sustainable alternatives and to curb our reliance on fossil-based resources. Industrial biotechnology using microbial cell factories has entered an era where scientific and technological advances in bioengineering can contribute appreciably towards sustainable product development using renewable carbon feedstocks. Utilization of waste and greenhouse gases such as CO2 or CH4 to produce valuable products, thereby reducing carbon emissions and creating net-zero circular economies, should be at the forefront of the governments sustainable industrial decarbonization policies. These waste gases have the potential to become the third generation sustainable and techno economically feasible feedstocks. C1 gas consuming aerobic bacteria possess significant advantages over their anaerobic counterparts such as wider product spectrum, higher productivities and genetic amenability. However, the flammability concerns of H2 and O2 mixtures limit optimum O2 concentrations in aerobic gas fermentations. Lower O2 concentrations mean higher mass transfer requirements are necessary for a viable fermentation process. This is a known problem in a typical industrial aerobic fermentation and the problem is only exacerbated in aerobic gas fermentation where O2 concentration are limited. An alternative process design is therefore pivotal for an economically feasible process within the capital cost context of industrial gas fermentation.Microbial electrosynthesis combines electrochemistry and biotechnology in a resource-efficient processes by relying on waste raw materials and renewable energies. Electro-biotechnology strives for the concept of power-to-chemicals to narrow or even close the gap between the energy and the chemistry sector. Electrogenic /electroactive bacteria (EAB) such as, Geobacter sulfurreducens and Shewanella oneidensis are natural carriers of extracellular electron transfer pathways and are extensively studied, however O2 sensitivity and lack of genetic tools have limited the use of these bacteria mostly for bioremediation purposes.In this project we aim to design and set up a bioprocess platform that will enable the assessment of electro-fermentative potential of biocatalysts for the production of value-added chemicals. This platform will be used to elucidate the genetic basis of external electron transfer (EET) in Cupriavidus metallidurans CH34, a facultative anaerobic, CO2 consuming bacteria. This collaborative multidisciplinary study aims to use complimentary approaches in electrochemical characterisation and engineering biology to elucidate and validate the EET mechanism in this bacterium. This will be followed by demonstrating its potential in a bio-electro fermentation process, producing a valuable product from CO2. Elucidating the exact mechanism of EET in this bacterium will also open doors to potentially transfer this mechanism to its close relative, Cupriavidus necator H16 which is proven to be an efficient autotrophic bacterium converting CO2 to highly valuable products. With the unique and complementary skills from the PI (bioprocess enigneering/development), the Co-I (synthetic biology) and the international partners (sustainable electrochemistry), via effective knowledge exchange activities, including outreach activities, we will showcase the integration of this technology within the current chemical industries as a prime example for sustainable industrial decarbonisation.
化学工业严重依赖原油,这是一种有限且不可持续的资源,全球价格波动对全球经济产生负面影响。石化储量的枯竭,加上全球碳排放量空前增加引发的恶劣天气事件,是开发无害环境、可持续替代品和遏制我们对化石资源依赖的驱动力。使用微生物细胞工厂的工业生物技术已经进入了一个时代,生物工程的科学和技术进步可以为使用可再生碳原料的可持续产品开发做出显着贡献。利用废物和二氧化碳或甲烷等温室气体生产有价值的产品,从而减少碳排放并创造净零循环经济,应成为政府可持续工业脱碳政策的首要内容。这些废气有潜力成为第三代可持续且技术经济可行的原料。消耗 C1 气体的好氧细菌比厌氧细菌具有显着的优势,例如更广泛的产品谱、更高的生产力和遗传适应性。然而,氢气和氧气混合物的易燃性问题限制了需氧气体发酵中的最佳氧气浓度。较低的氧气浓度意味着可行的发酵过程需要更高的传质要求。这是典型工业需氧发酵中的已知问题,并且该问题在氧气浓度有限的需氧气体发酵中只会加剧。因此,在工业气体发酵的资本成本背景下,替代工艺设计对于经济上可行的工艺至关重要。微生物电合成依靠废弃原材料和可再生能源,将电化学和生物技术结合在资源高效的工艺中。电子生物技术致力于实现从电力到化学品的概念,以缩小甚至消除能源和化学领域之间的差距。生电/电活性细菌 (EAB),如硫还原地杆菌和希瓦氏菌,是细胞外电子传递途径的天然载体,并得到广泛研究,然而 O2 敏感性和遗传工具的缺乏限制了这些细菌主要用于生物修复目的。该项目的目标是设计和建立一个生物工艺平台,该平台将能够评估生物催化剂用于生产增值化学品的电发酵潜力。该平台将用于阐明 Cupriavidus metallidurans CH34(一种兼性厌氧、消耗 CO2 的细菌)中外部电子转移 (EET) 的遗传基础。这项多学科合作研究旨在利用电化学表征和工程生物学方面的互补方法来阐明和验证该细菌的 EET 机制。随后将展示其在生物电发酵过程中的潜力,利用二氧化碳生产有价值的产品。阐明这种细菌中 EET 的确切机制也将为将该机制转移到其近亲 Cupriavidus necator H16 上打开大门,该细菌已被证明是一种有效的自养细菌,可将二氧化碳转化为高价值的产品。凭借 PI(生物工艺工程/开发)、Co-I(合成生物学)和国际合作伙伴(可持续电化学)独特且互补的技能,通过有效的知识交流活动,包括外展活动,我们将展示这一整合当前化学工业中的技术作为可持续工业脱碳的一个主要例子。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rajesh Reddy Bommareddy其他文献

Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries
将木糖增值为可再生燃料和化学品,这是增强木质纤维素生物精炼厂商业可行性的重要一步
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Vivek Narisetty;Rylan Cox;Rajesh Reddy Bommareddy;Deepti Agrawal;Ejaz Ahmad;K. Pant;A. Chandel;S. Bhatia;Dinesh Kumar;Binod Parameswaran;V. Gupta;Vinod Kumar
  • 通讯作者:
    Vinod Kumar
Arabinose as an overlooked sugar for microbial bioproduction of chemical building blocks.
阿拉伯糖是一种被忽视的糖,用于化学构建模块的微生物生物生产。
  • DOI:
    10.1080/07388551.2023.2270702
  • 发表时间:
    2023-11-06
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Vinod Kumar;Deepti Agrawal;Rajesh Reddy Bommareddy;M. A. Islam;Samuel Jacob;Venkatesh Balan;Vijai Singh;Vijay Kumar Thakur;N. Navani;Nigel S Scrutton
  • 通讯作者:
    Nigel S Scrutton
The substrate specificity in theO-demethylation of 4-alkylguaiacols by cytochrome P450 AgcAP450
  • DOI:
    10.1039/d3cy00123g
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Sónia F. G. Santos;Rajesh Reddy Bommareddy;Gary W. Black;Warispreet Singh;Meilan Huang
  • 通讯作者:
    Meilan Huang
Engineering improved ethylene production: Leveraging systems Biology and adaptive laboratory evolution.
工程改进乙烯生产:利用系统生物学和适应性实验室进化。
  • DOI:
    10.1016/j.ymben.2021.07.001
  • 发表时间:
    2021-07-07
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Sophie Vaud;N. Pearcy;Marko Hanževački;Ale;er M W Van Hagen;er;S. Abdelrazig;L. Safo;Muhammad Ehsaan;M. Jonczyk;Thomas Millat;Sean Craig;Edward M. Spence;J. Fothergill;Rajesh Reddy Bommareddy;P. Colin;J. Twycross;P. Dalby;N. Minton;C. M. Jäger;Dong;Jianping Yu;P. Maness;Sean A. Lynch;C. Eckert;A. Conradie;Samantha J. Bryan
  • 通讯作者:
    Samantha J. Bryan
Deregulation of Feedback Inhibition of Phosphoenolpyruvate Carboxylase for Improved Lysine Production in Corynebacterium glutamicum
放松磷酸烯醇丙酮酸羧化酶的反馈抑制以改善谷氨酸棒杆菌中的赖氨酸产量
  • DOI:
    10.1128/aem.03535-13
  • 发表时间:
    2013-12-13
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Zhen Chen;Rajesh Reddy Bommareddy;D. Frank;Sugima Rappert;A. Zeng
  • 通讯作者:
    A. Zeng

Rajesh Reddy Bommareddy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

我国传统老坛酸菜发酵过程中活性微生物演替规律及其特征香气的代谢形成机制
  • 批准号:
    32372303
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
黑曲霉柠檬酸发酵过程中残糖形成与糖类利用的调控机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
中药药渣固态发酵过程功能微生物种群及其在养分转化中的作用研究
  • 批准号:
    82274036
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
酵母乙醇逆境发酵过程细胞异质性及其抗逆机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
发酵液中融合纤维素酶的原位泡沫分离过程设计及其气-液传质强化
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Characterizing Pareto fronts: Trade-offs in the yeast growth cycle constrain adaptation
表征帕累托前沿:酵母生长周期的权衡限制了适应
  • 批准号:
    10749856
  • 财政年份:
    2024
  • 资助金额:
    $ 21.06万
  • 项目类别:
2023 Lactic Acid Bacteria Biology, Symbioses and Applications GRC
2023年乳酸菌生物学、共生体和应用GRC
  • 批准号:
    10683583
  • 财政年份:
    2023
  • 资助金额:
    $ 21.06万
  • 项目类别:
Elucidating the Host Metabolic Response to Consumption of Kombucha-associated Microorganisms
阐明宿主对康普茶相关微生物消耗的代谢反应
  • 批准号:
    10678132
  • 财政年份:
    2023
  • 资助金额:
    $ 21.06万
  • 项目类别:
Molecular mechanisms behind microbiota regulation of host amino acid and glucose homeostasis
微生物群调节宿主氨基酸和葡萄糖稳态背后的分子机制
  • 批准号:
    10639042
  • 财政年份:
    2023
  • 资助金额:
    $ 21.06万
  • 项目类别:
Using Common Fund Datasets to Illuminate Drug-Microbial Interactions
使用共同基金数据集阐明药物-微生物相互作用
  • 批准号:
    10777339
  • 财政年份:
    2023
  • 资助金额:
    $ 21.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了