Symmetry and measurement: a foundation for semi-local quantum physics
对称性与测量:半定域量子物理的基础
基本信息
- 批准号:EP/Y000099/1
- 负责人:
- 金额:$ 59.78万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This proposal concerns quantum theory, describing (sub)atomic matter, and Einstein's theories of relativity, describing gravitation and high speed motion. These fundamental building blocks of modern physics do not fit easily together. This project tackles several problems at the boundary between these important subjects. Quantum theory and special relativity are combined in quantum field theory (QFT), a hugely successful model for particle physics tested spectacularly at CERN. However its mathematical foundations are incomplete and the combination of quantum theory with general relativity (quantum gravity) is one of the biggest open problems in science.One tension between quantum theory and relativity concerns measurement. Students learn that quantum measurement causes an instantaneous state collapse, but relativity teaches that different observers disagree on what "instantaneous" means. Consequently, the description of measurement in QFT has been plagued by inconsistencies and paradoxes suggesting, for example, that typical measurements allow impossible faster than light signalling. Significant recent progress by members of the project team has provided a measurement framework that is fully compatible with relativity and free of the problems afflicting earlier work. This proposal will significantly generalise these ideas for measurements in quantum gravity.At this point, symmetry enters. Physicists and mathematicians like symmetry because it can often simplify problems and produces very pleasing mathematical structures. However general relativity has so much symmetry that a serious problem occurs: there are no local physical observable quantities. One solution is to work with the grain of the symmetry, introducing "relational observables", which have been implemented by one of us in effective quantum gravity. We will integrate them into the general framework for measurement mentioned above, bridging between the theoretical idea and its implementation (an observable that cannot be measured in practice is of little use).Another theme in our proposal is the relation between symmetry and boundaries, particularly boundaries in spacetime. For example,the event horizon of a black hole represents an effective boundary: classical information can flow in, but not out. However, Hawking showed that when quantum theory is taken into account, black holes radiate as if they are hot and can even evaporate entirely. Now, the information that comes out is much less ordered than the information that enters. What happens to the `lost information' is a famous unsolved problem and it has been suggested that degrees of freedom related to symmetries may hold the key. These degrees of freedom are not localised within the bulk of spacetime but rather live on the boundaries of spacetime, at the horizon and also a boundary at infinity. Another example is that charged particles, e.g. electrons, are always accompanied by a cloud of `soft photons' that reaches to infinity. Again, this exemplifies the significance of boundary degrees of freedom, and the complicated way in which they may be mixed up with the bulk.The long-term goal of our proposal is to move beyond traditional ideas of localisation in QFT to build a framework for "semi-local quantum physics" that can handle boundary and relational observables just as easily as those with absolute localisation away from boundaries.While this proposal is fundamental discovery science, its long term impact may include technological applications. Quantum information theory is rapidly moving from the laboratory into large scale terrestrial and even space-borne and satellite systems. These developments put quantum information theory into the relativistic realm and so a clear framework incorporating an operational understanding of measurement in QFT could become a standard tool for analysing such technologies.
该提案涉及描述(亚)原子物质的量子理论和描述引力和高速运动的爱因斯坦相对论。现代物理学的这些基本组成部分并不容易组合在一起。该项目解决了这些重要主题之间的几个问题。量子场论 (QFT) 结合了量子理论和狭义相对论,这是一个非常成功的粒子物理模型,在欧洲核子研究组织 (CERN) 进行了令人惊叹的测试。然而,它的数学基础并不完整,量子理论与广义相对论(量子引力)的结合是科学中最大的开放问题之一。量子理论和相对论之间的一个紧张关系涉及测量。学生们了解到量子测量会导致瞬时状态崩溃,但相对论告诉我们,不同的观察者对“瞬时”的含义存在分歧。因此,QFT 中的测量描述一直受到不一致和悖论的困扰,例如,典型的测量不可能比光信号传输更快。项目团队成员最近取得的重大进展提供了一个与相对论完全兼容的测量框架,并且没有影响早期工作的问题。该提议将显着推广量子引力测量的这些想法。此时,对称性出现了。物理学家和数学家喜欢对称性,因为它通常可以简化问题并产生非常令人愉快的数学结构。然而广义相对论具有如此多的对称性,以至于出现了一个严重的问题:不存在局部可观测的物理量。一种解决方案是利用对称性,引入“关系可观测量”,这已由我们中的一个人在有效量子引力中实现。我们将把它们整合到上面提到的测量的总体框架中,在理论思想和它的实现之间架起桥梁(在实践中无法测量的可观察到的东西没有多大用处)。我们提案中的另一个主题是对称性和边界之间的关系,特别是时空的边界。例如,黑洞的事件视界代表了一个有效边界:经典信息可以流入,但不能流出。然而,霍金表明,当考虑到量子理论时,黑洞会像热一样辐射,甚至可以完全蒸发。现在,输出的信息比输入的信息有序得多。 “丢失的信息”会发生什么是一个著名的未解决问题,有人认为与对称性相关的自由度可能是关键。这些自由度并不局限于大部分时空内,而是存在于时空的边界、地平线以及无穷远的边界上。另一个例子是带电粒子,例如电子总是伴随着一团达到无穷远的“软光子”。这再次例证了边界自由度的重要性,以及它们可能与主体混合的复杂方式。我们建议的长期目标是超越 QFT 中本地化的传统思想,建立一个框架“半局部量子物理”可以像那些远离边界的绝对局域化一样容易地处理边界和关系可观测量。虽然这个提议是基础发现科学,但其长期影响可能包括技术应用。量子信息理论正迅速从实验室进入大规模陆地甚至星载和卫星系统。这些发展将量子信息理论带入了相对论领域,因此包含 QFT 测量操作理解的清晰框架可能成为分析此类技术的标准工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katarzyna Anna Rejzner其他文献
Katarzyna Anna Rejzner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katarzyna Anna Rejzner', 18)}}的其他基金
New algebraic structures inspired by quantum field theory
受量子场论启发的新代数结构
- 批准号:
EP/P021204/1 - 财政年份:2017
- 资助金额:
$ 59.78万 - 项目类别:
Research Grant
相似国自然基金
面向IPv6下一代互联网的网络空间基础资源测量关键技术研究
- 批准号:62302253
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
毫米波段细胞液宽频带介电谱测量技术基础研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Kretschmann结构的手性表面等离激元及圆二色性测量基础研究
- 批准号:
- 批准年份:2022
- 资助金额:59 万元
- 项目类别:面上项目
肿瘤标志物量子精密测量关键技术的基础研究
- 批准号:52130510
- 批准年份:2021
- 资助金额:300 万元
- 项目类别:重点项目
复杂问题化学测量学数学分离基础理论及定量分析应用的深化研究
- 批准号:
- 批准年份:2021
- 资助金额:61 万元
- 项目类别:面上项目
相似海外基金
The Network for Investigation of Delirium: Unifying Scientists (NIDUS)'s 9th-13th Annual Delirium Boot Camps: A Foundation for Future Exploration
谵妄调查网络:联合科学家 (NIDUS) 的第 9 至 13 届年度谵妄训练营:未来探索的基础
- 批准号:
10237513 - 财政年份:2021
- 资助金额:
$ 59.78万 - 项目类别:
The Network for Investigation of Delirium: Unifying Scientists (NIDUS)'s 9th-13th Annual Delirium Boot Camps: A Foundation for Future Exploration
谵妄调查网络:联合科学家 (NIDUS) 的第 9 至 13 届年度谵妄训练营:未来探索的基础
- 批准号:
10614489 - 财政年份:2021
- 资助金额:
$ 59.78万 - 项目类别:
The Network for Investigation of Delirium: Unifying Scientists (NIDUS)'s 9th-13th Annual Delirium Boot Camps: A Foundation for Future Exploration
谵妄调查网络:联合科学家 (NIDUS) 的第 9 至 13 届年度谵妄训练营:未来探索的基础
- 批准号:
10378656 - 财政年份:2021
- 资助金额:
$ 59.78万 - 项目类别:
hot Gas Raman Identification and measurement For Foundation INdustries (GRIFFIN)
基础行业的热气拉曼识别和测量 (GRIFFIN)
- 批准号:
95372 - 财政年份:2021
- 资助金额:
$ 59.78万 - 项目类别:
Collaborative R&D
Building a Lasting Foundation to Advance Actionable Research on Recovery Support Services for High Risk Individuals with Opioid Use Disorder: The Initiative for Justice and Emerging Adult Populations
建立持久的基础,推进阿片类药物使用障碍高危人群康复支持服务的可行研究:正义和新兴成年人口倡议
- 批准号:
10377557 - 财政年份:2020
- 资助金额:
$ 59.78万 - 项目类别: