Quantum Sensing of the Geomagnetic Space Weather Environment

地磁空间天气环境的量子传感

基本信息

  • 批准号:
    EP/X036405/1
  • 负责人:
  • 金额:
    $ 17.99万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

On 13 March 1989, the largest magnetic storm of the last century caused widespread effects on power systems around the world including a blackout of the Hydro-Québec system in Canada. In the space of 93 seconds, its power grid collapsed leaving residents without electricity for 9 hours. In the UK, two large power transformers were severely damaged and required expensive repairs. In the intervening 30 years, society has become much more reliant on continuous power supply, global navigation satellite systems (GNSS), broadband internet, mobile phone communication and other services which can be badly affected by so-called space weather, specifically the effects generated by rapid variations of the magnetic field on the order of seconds to minutes. It is anticipated that a more severe event than the March 1989 storm in the contemporary UK could cause economic damage on the order of billions of pounds per day. Measuring changes of the geomagnetic during a storm is of critical national importance and can help understand the hazards posed from space weather. While present day scientific-level instruments that measure the magnetic field (called fluxgate magnetometers) at UK geomagnetic observatories are very sensitive, they are not quite sufficient for the task of making absolute rapid, high-accuracy and noise-free measurements of the magnetic field. We wish to build and deploy a new type of sensor known as an optically pumped magnetometer. This uses cutting-edge quantum technology, developed in the last decade, to measure the vibrations of Caesium (Cs) atoms inside a glass cell which are able to detect small changes of the Earth's magnetic field. As a bonus, the new magnetometers reduce the size, weight and power requirements of a sensor while increasing its accuracy over 100-fold compared to current instrumentation. To test the new optically pumped magnetometer we will run it in parallel with the scientific instruments at the Eskdalemuir geomagnetic observatory in the Scottish borders for six months. This location has had a world-leading observatory in operation since 1904 and is one of the magnetically cleanest sites in the UK. Once the performance has been assessed a further five OPM sensors will be built, integrated into a bespoke communications and power supply and deployed to remote sites across the UK to augment the BGS space weather monitoring network. In conjunction with the existing geomagnetic instruments, we will achieve a world first with the densest national network of magnetometers. This will surpass the World Meteorological Organisation (WMO) recommendation of no more than 200 km between magnetic stations.The project will bring together the technical skills of the University of Strathclyde's Physics Department to build the sensor, along with RAL Space's electronic system experience to optimise its performance. The British Geological Survey Geomagnetism team have ample experience in deploying and running long term installations and validating the accuracy of magnetic instruments. This is a cross-disciplinary project with the potential to bring technical, scientific, social and economic benefit in the form of a new high accuracy magnetometer than the can be deployed across the UK (and the world) in order to study the effects of hazardous space weather.
1989 年 3 月 13 日,上世纪最大的磁暴对世界各地的电力系统造成了广泛影响,包括加拿大魁北克水电系统在 93 秒内停电,导致居民断电。在英国,两个大型电力变压器严重损坏,需要昂贵的维修。在此后的 30 年里,社会变得更加依赖持续供电、全球导航卫星系统 (GNSS) 和宽带。互联网、移动电话通信和其他服务可能会受到所谓的太空天气的严重影响,特别是磁场快速变化所产生的影响,预计几秒到几分钟的影响会比三月份的事件更严重。 1989 年英国的风暴每天可能造成数十亿英镑的经济损失,测量风暴期间的地磁变化对于国家至关重要,并且可以帮助了解太空天气造成的危害。测量磁场的仪器英国地磁天文台的磁通门磁力计非常敏感,但不足以完成绝对快速、高精度和无噪声的磁场测量任务。我们希望构建和部署一种新型传感器。它被称为光泵磁力计,它使用近十年来开发的尖端量子技术来测量玻璃单元内铯 (Cs) 原子的振动,从而能够检测地球磁场的微小变化。作为奖励,新型磁力计减少了传感器的尺寸、重量和功率要求,同时与现有仪器相比,其精度提高了 100 倍以上。为了测试新型光泵磁力计,我们将其与科学仪器并行运行。位于苏格兰边境的埃斯克代尔缪尔地磁观测站自 1904 年以来一直在运行,是世界领先的观测站,经过性能评估,它是英国磁力最干净的观测站之一。将建造另外五个 OPM 传感器,将其集成到定制通信和电源中,并部署到英国各地的远程站点,以增强 BGS 空间天气监测网络。与现有的地磁仪器相结合,我们将实现世界首创。这将超过世界气象组织 (WMO) 建议的磁力站之间不超过 200 公里的国家磁力计网络。该项目将汇集斯特拉斯克莱德大学物理系的技术技能来建设传感器以及 RAL Space 的电子系统经验来优化其性能。英国地质调查局地磁团队在部署和运行长期安装以及验证磁性仪器的准确性方面拥有丰富的经验。这是一个具有潜力的跨学科项目。新型高精度磁力计可以在英国(和世界各地)部署,以研究危险太空天气的影响,从而带来技术、科学、社会和经济效益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ciaran Beggan其他文献

Ciaran Beggan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ciaran Beggan', 18)}}的其他基金

Vector light enhanced atomic magnetometry
矢量光增强原子磁力测量
  • 批准号:
    EP/Z000521/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Research Grant
Modelling the impact of geomagnetically induced currents on UK railways
模拟地磁感应电流对英国铁路的影响
  • 批准号:
    NE/Y001176/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Research Grant
Measuring the effects of Space Weather in the UK using a network of school magnetometers
使用学校磁力计网络测量英国空间天气的影响
  • 批准号:
    ST/M006565/1
  • 财政年份:
    2015
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Research Grant

相似国自然基金

融合多源场信息的磁温漂抑制及磁误差校正方法研究
  • 批准号:
    41904164
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
面向海洋地球物理研究的光纤激光水下多参量传感器
  • 批准号:
    61875185
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
飞行器地磁匹配导航中磁矢量探测器在线误差校正及指向对准方法研究
  • 批准号:
    51707152
  • 批准年份:
    2017
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
基于GMI效应的薄膜地磁传感器噪声形成机理与优化设计研究
  • 批准号:
    41574175
  • 批准年份:
    2015
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
标准CMOS工艺下单片三轴向地磁传感集成电路设计技术研究
  • 批准号:
    61204034
  • 批准年份:
    2012
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Quantum Sensing of the Geomagnetic Space Weather Environment
地磁空间天气环境的量子传感
  • 批准号:
    EP/X036391/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Research Grant
Quantum Sensing of the Geomagnetic Space Weather Environment
地磁空间天气环境的量子传感
  • 批准号:
    EP/X036545/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Research Grant
Radio Sensing Techniques with Artificial Intelligence for Diagnosing Insulation Deterioration of Ground Coils of Superconducting Maglev Systems
用于诊断超导磁悬浮系统接地线圈绝缘劣化的人工智能无线电传感技术
  • 批准号:
    20K04418
  • 财政年份:
    2020
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On-Board Radio Sensing Techniques for Diagnosing Insulation Deterioration of Ground Coils of Superconducting Maglev Systems
用于诊断超导磁悬浮系统接地线圈绝缘劣化的车载无线电传感技术
  • 批准号:
    17K06302
  • 财政年份:
    2017
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New lightning imaging method using adaptive sensing and its application for local severe phenomena
自适应传感闪电成像新方法及其在局部严重现象中的应用
  • 批准号:
    26750138
  • 财政年份:
    2014
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了