Dynamics of the solar corona in the era of data intensive observations (DynaSun)
数据密集观测时代的日冕动力学(DynaSun)
基本信息
- 批准号:EP/Y037456/1
- 负责人:
- 金额:$ 13.9万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
More than 90% of the visible Universe is in the form of a plasma - the fourth state of matter. The study of physical properties of a plasma forms one of the most far ranging and challenging research areas in physics today. From cosmological objects to controlled fusion, this complex, but fundamental state of matter is proving to be of ever-greater significance in understanding the dynamics of the Universe and in harnessing the material world for the greatest technological result and the improvement of our society.The strategic aims of plasma research relate to the global challenges faced by humankind. One is the ecologically friendly and practically endless source of energy, the controlled fusion reaction that is believed to be achievable in magnetic confinement reactors, tokamaks. The working body in tokamaks reactors is a plasma. Another is the understanding of the key ingredient of the Earth's climate change, the solar effect on the Earth's climate. Also, the plasma research plays the central role in Space Weather, the study of the solar-terrestrial relations through the physical processes operating in the heliosphere. This branch of science is becoming increasingly important in the context of space exploration, e.g., Moon and Mars expeditions, and the stability and safety of space-based telecommunication and tele-navigation systems, energy supply lines and pipelines. Last but not least is the study of plasma physics of fundamental astrophysical processes. The solar corona is a showcase ("Rosetta stone") for plasma behaviour in other astrophysical objects. This makes the plasma research one of the strategic directions of Physical Sciences.Despite of the abundance of the plasma state of matter in the Universe, the physical conditions on the Earth do not allow us to reach the plasma easily. The intrinsic difficulties of the laboratory plasma research are the cost and the technological problems of plasma creation and confinement. This motivates our interest in the space plasma systems, such as the atmosphere of the Sun, where the plasma is naturally created and is open to direct high-resolution study. Solar plasma systems are used as natural plasma laboratory that provide us with a vast variety of plasma configurations and physical conditions. The study of the solar corona, the upper, fully ionised and very hot part of the solar atmosphere, is of particular importance not only because of its unique physical state (high temperature, high density, strong magnetic field), which makes it close to the conditions in controlled fusion reactors, but also because of its direct relevance to solar-terrestrial relations, such as Space Weather and the Earth's climate. Coronal research itself faces several key challenges, including understanding of mechanisms for coronal plasma heating, and energetics and physical scenarios of energy releases such as flares and coronal mass ejections, and the physical conditions leading to them. In the proposed research we address outstanding questions of modern solar physics connected with dynamic phenomena in the solar atmosphere summarised below, and described in dedicated work packages (WP). The key common theme linking the proposed research are magnetohydrodynamic (MHD) waves which are a ubiquitous feature of solar atmospheric dynamics,
可见的宇宙中有90%以上是血浆的形式 - 物质的第四个状态。血浆物理性质的研究构成了当今物理学中最遥远,最具挑战性的研究领域之一。从宇宙学对象到受控的融合,这种复杂但基本的物质被证明在理解宇宙的动态和利用物质世界的技术结果和社会的改善方面具有越来越大的意义。与人类面临的全球挑战有关的战略目标。一种是生态友好且实际上无尽的能量来源,该反应被认为可以在磁性限制反应堆,Tokamaks中实现。 Tokamaks反应堆中的工作机构是等离子体。另一个是对地球气候变化的关键要素的理解,即对地球气候的太阳影响。此外,血浆研究在太空天气中起着核心作用,这是通过在地球球中运行的物理过程对太阳事物关系的研究。在太空探索的背景下,这种科学的这个分支机构越来越重要,例如月球和火星探险,以及基于空间的电信和电信系统,能源供应线和管道的稳定性和安全性。最后但并非最不重要的是研究基本天体物理过程的血浆物理学。太阳能电晕是其他天体物理物体中血浆行为的展示柜(“ Rosetta Stone”)。这使得等离子体研究成为物理科学的战略方向之一。尽管存在宇宙中物质的丰度,但地球上的物理条件不允许我们轻松地到达血浆。实验室等离子体研究的内在困难是等离子体创建和限制的成本和技术问题。这激发了我们对空间等离子体系统的兴趣,例如在天然产生等离子体的太阳气氛中,并可以直接进行高分辨率研究。太阳等离子体系统被用作天然等离子体实验室,为我们提供了各种各样的等离子体构型和身体状况。太阳能电晕的研究,太阳大气中的上部,完全离子和非常热的部分,尤其重要,这不仅是因为其独特的物理状态(高温,高密度,高,磁场强),这使其接近受控融合反应堆的条件,而且还因为它与太阳能关系的直接相关性,例如太阳能关系,例如太空的气候和地球风险。冠状动脉研究本身面临着几个关键挑战,包括了解冠状血浆加热机制,以及能量释放的能量和物理场景,例如耀斑和冠状质量弹出,以及导致它们的物理条件。在拟议的研究中,我们解决了下面的太阳大气中与动态现象相关的现代太阳能物理学的杰出问题,并在专用的工作包(WP)中进行了描述。连接拟议研究的关键共同主题是磁性水力学(MHD)波,这是太阳大气动力学的无处不在的特征,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
相似国自然基金
界面分子工程构筑高效稳定的DJ-2D/3D杂化钙钛矿太阳能电池
- 批准号:52363026
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
新型主-客体配位空穴掺杂剂构筑高效稳定钙钛矿太阳能电池的研究
- 批准号:62374029
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
甲脒基钙钛矿太阳能电池的铁污染容忍度研究
- 批准号:22309112
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
太阳系附近星际环境对宇宙线性质的影响
- 批准号:12375103
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
CsPbI3太阳能电池的失稳机制与稳定策略研究
- 批准号:22379010
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
DynaSun - Dynamics Of The Solar Corona In The Era Of Data Intensive Observations
DynaSun - 数据密集观测时代的日冕动力学
- 批准号:EP/Y037464/1EP/Y037464/1
- 财政年份:2024
- 资助金额:$ 13.9万$ 13.9万
- 项目类别:Research GrantResearch Grant
RAPID: Exploring the Dynamics and Thermodynamics of the Sun's Corona with Total Solar Eclipse Observations
RAPID:通过日全食观测探索太阳日冕的动力学和热力学
- 批准号:18346621834662
- 财政年份:2018
- 资助金额:$ 13.9万$ 13.9万
- 项目类别:Standard GrantStandard Grant
Dynamics of Complex Magnetic Fields: From the corona to the solar wind
复杂磁场的动力学:从日冕到太阳风
- 批准号:ST/N000714/1ST/N000714/1
- 财政年份:2016
- 资助金额:$ 13.9万$ 13.9万
- 项目类别:Research GrantResearch Grant
Dynamics of Complex Magnetic Fields: From the corona to the solar wind
复杂磁场的动力学:从日冕到太阳风
- 批准号:ST/N000781/1ST/N000781/1
- 财政年份:2016
- 资助金额:$ 13.9万$ 13.9万
- 项目类别:Research GrantResearch Grant
SHINE: Impact of Large-Scale Magnetic Topology on Dynamics of Solar Corona
SHINE:大规模磁拓扑对日冕动力学的影响
- 批准号:13570181357018
- 财政年份:2014
- 资助金额:$ 13.9万$ 13.9万
- 项目类别:Continuing GrantContinuing Grant