AI for Productive Research & Innovation in eLectronics (APRIL) Hub
人工智能促进高效研究
基本信息
- 批准号:EP/Y029763/1
- 负责人:
- 金额:$ 1309.15万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence (AI) is undergoing an era of explosive growth. With increasingly capable AI agents such as chatGPT, AlphaFold, Gato and DALL-E capturing the public imagination, the potential impact of AI on modern society is becoming ever clearer for all to see. APRIL is a project that seeks to bring the benefits of AI to the electronics industry of the UK. Specifically, we aspire developing AI tools for cutting development times for everything from new, fundamental materials for electronic devices to complicated microchip designs and system architectures, leading to faster, cheaper, greener and overall, more power-efficient electronics.Imagine a future where extremely complex and intricate material structures, far more complex than what a human could design alone, are optimised by powerful algorithms (such as an AlphaFold for semiconductor materials). Or consider intelligent machines with domain-specialist knowledge (think of a Gato-like system trained on exactly the right milieu of skills) experimenting day and night with manufacturing techniques to build the perfect electronic components. Or yet what if we had algorithms trained to design circuits by interacting with an engineer in natural language (like a chatGPT with specialist knowledge)? Similar comments could be made about systems that would take care of the most tedious bits of testing and verifying increasingly complex systems such as mobile phone chipsets or aircraft avionics software, or indeed for modelling and simulating electronics (both potentially achievable by using semi-automated AI coders such asGoogle's "PaLM" model). This is precisely the cocktail of technologies that APRIL seeks to develop.In this future, AI - with its capabilities of finding relevant information, performing simple tasks when instructed to do so and its incredible speed - would operate under the supervision of experienced engineers for assisting them in creating electronics suited to an ever-increasing palette of requirements, from low-power systems to chips manufactured to be recyclable to ultra-secure systems for handling the most sensitive and private data. To achieve this, APRIL brings together a large consortium of universities, industry and government bodies, working together to develop: i) the new technologies of the future, ii) the tools that will make these technologies a reality and very importantly, iii) the people with the necessary skills (for building as well as using such new tools) to ensure that the UK remains a capable and technologically advanced player in the global electronics industry.
人工智能(AI)正在经历一个爆炸性增长的时代。随着 chatGPT、AlphaFold、Gato 和 DALL-E 等功能日益强大的人工智能代理激发了公众的想象力,人工智能对现代社会的潜在影响正变得越来越清晰。 APRIL 是一个旨在将人工智能的优势带给英国电子行业的项目。具体来说,我们渴望开发人工智能工具,以缩短从电子设备的新基础材料到复杂的微芯片设计和系统架构的各种开发时间,从而带来更快、更便宜、更环保、整体更节能的电子产品。想象一下未来,复杂而错综复杂的材料结构,远比人类单独设计的复杂得多,可以通过强大的算法(例如用于半导体材料的 AlphaFold)进行优化。或者考虑具有领域专业知识的智能机器(想象一下在正确的技能环境下训练的类似 Gato 的系统),日以继夜地试验制造技术以构建完美的电子元件。或者,如果我们训练算法通过使用自然语言(例如具有专业知识的 chatGPT)与工程师交互来设计电路,会怎么样?对于那些负责最繁琐的测试和验证日益复杂的系统的系统,例如手机芯片组或飞机航空电子软件,或者实际上用于建模和模拟电子设备的系统,也可以做出类似的评论(两者都可以通过使用半自动化人工智能来实现)编码器,例如 Google 的“PaLM”模型)。这正是 APRIL 寻求开发的技术混合物。在未来,人工智能 - 具有查找相关信息、根据指示执行简单任务的能力及其令人难以置信的速度 - 将在经验丰富的工程师的监督下运行,以协助他们创造出适合不断增长的需求的电子产品,从低功耗系统到可回收的芯片,再到用于处理最敏感和私人数据的超安全系统。为了实现这一目标,APRIL 汇集了由大学、行业和政府机构组成的大型联盟,共同开发:i) 未来的新技术,ii) 使这些技术成为现实的工具,非常重要的是,iii)拥有必要技能(构建和使用此类新工具)的人员,以确保英国在全球电子行业中仍然是一个有能力且技术先进的参与者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Themis Prodromakis其他文献
Themis Prodromakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Themis Prodromakis', 18)}}的其他基金
Functional Oxide Reconfigurable Technologies (FORTE): A Programme Grant
功能性氧化物可重构技术 (FORTE):一项计划资助
- 批准号:
EP/R024642/2 - 财政年份:2022
- 资助金额:
$ 1309.15万 - 项目类别:
Research Grant
Functional Oxide Reconfigurable Technologies (FORTE): A Programme Grant
功能性氧化物可重构技术 (FORTE):一项计划资助
- 批准号:
EP/R024642/1 - 财政年份:2018
- 资助金额:
$ 1309.15万 - 项目类别:
Research Grant
An electronic-based ELISA combined with microfluidics
基于电子的 ELISA 与微流体技术相结合
- 批准号:
EP/L020920/1 - 财政年份:2014
- 资助金额:
$ 1309.15万 - 项目类别:
Research Grant
Plasticity in NEUral Memristive Architectures
神经忆阻架构中的可塑性
- 批准号:
EP/J00801X/2 - 财政年份:2013
- 资助金额:
$ 1309.15万 - 项目类别:
Research Grant
Reliably unreliable nanotechnologies
可靠但不可靠的纳米技术
- 批准号:
EP/K017829/1 - 财政年份:2013
- 资助金额:
$ 1309.15万 - 项目类别:
Fellowship
相似海外基金
Collaborative Research: A Multipronged Approach to Investigate how Hydrography and Mixing Shape Productive Fjord Ecosystems in Greenland
合作研究:采用多管齐下的方法来研究水文学和混合如何塑造格陵兰岛富有生产力的峡湾生态系统
- 批准号:
2335928 - 财政年份:2024
- 资助金额:
$ 1309.15万 - 项目类别:
Standard Grant
Collaborative Research: A Multipronged Approach to Investigate how Hydrography and Mixing Shape Productive Fjord Ecosystems in Greenland
合作研究:采用多管齐下的方法来研究水文学和混合如何塑造格陵兰岛富有生产力的峡湾生态系统
- 批准号:
2335929 - 财政年份:2024
- 资助金额:
$ 1309.15万 - 项目类别:
Standard Grant
Collaborative Research: Research: Understanding and Scaffolding the Productive Beginnings of Engineering Judgment in Undergraduate Students
合作研究:研究:理解和支撑本科生工程判断的富有成效的开端
- 批准号:
2313241 - 财政年份:2023
- 资助金额:
$ 1309.15万 - 项目类别:
Standard Grant
Collaborative Research: Research: Understanding and Scaffolding the Productive Beginnings of Engineering Judgment in Undergraduate Students
合作研究:研究:理解和支撑本科生工程判断的富有成效的开端
- 批准号:
2313240 - 财政年份:2023
- 资助金额:
$ 1309.15万 - 项目类别:
Standard Grant
NNA Incubator: Collaborative Research: Indigenous-led Strategies for Co-Productive and Convergent Arctic Research
NNA 孵化器:合作研究:土著主导的北极研究协同生产和融合策略
- 批准号:
2318276 - 财政年份:2023
- 资助金额:
$ 1309.15万 - 项目类别:
Standard Grant