Adopting Green Solvents through Predicting Reaction Outcomes with AI/Machine Learning

通过人工智能/机器学习预测反应结果采用绿色溶剂

基本信息

  • 批准号:
    EP/X021033/1
  • 负责人:
  • 金额:
    $ 202.57万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The switch from traditional organic solvents, many of which are hazardous, volatile or non-sustainable, to modern green solvents is one of the key sustainability objectives in High Value Chemical Manufacture. Currently, the use of green solvents is often explored at process development stage, instead of discovery stage. This necessitates re-optimisation of processes, due to changes in yield, selectivity, impurity profile and purification. These lead to longer development time, cost, and additional uncertainty. On the other hand, selecting the right solvent early may enhance chemoselectivity, avoid additional reaction steps, and simplify purification of the products.Predicting these changes is an important underpinning capability for wider adaptation of green solvents in manufacturing. Unfortunately, the scarcity of reaction data in green solvents is a key obstacle in developing this capability. Thus, there is an urgent need for ML models which predict reactivity in green solvents based on available data in traditional solvents. In addition to addressing the short time-scale of early-stage process development, these will increase the confidence in utilising green solvents at discovery stage, support sophisticated synthetic routes planning tools which takes into account side products, impurity and purification methods, and act as valuable regulatory tools for assessing hazardous impurities.This project will address these challenges through the following objectives: O1 Addressing the scarcity of reactivity data in the literature through curation of reaction data with reliable reaction time and inclusion of rate laws. O2 Developing solvent-dependent reactivity and reaction selectivity prediction models for green solvents.O3 Producing a set of standard substrates based on cheminformatics analysis of industrially relevant reactions and collecting their reactivity data in green solvents.These outputs will have transformative impacts in the chemical manufacture industry, delivering rapid, more sustainable and better quality-controlled processes through shorter development time, and confidence in predicting reaction outcomes in green solvents. The project will be carried out with support from industrial partners working in the field of cheminformatics and AI/Machine learning, e.g. Lhasa Ltd. and Molecule One. Its outputs will be guided and exploited by partners who are end-users in the High Value Chemical Manufacturing sectors: AstraZeneca, CatSci, and Concept Life Science.
从传统有机溶剂(其中许多是危险的、挥发性的或不可持续的)转向现代绿色溶剂是高价值化学品制造的关键可持续发展目标之一。目前,绿色溶剂的使用通常是在工艺开发阶段而不是发现阶段进行探索。由于收率、选择性、杂质分布和纯化方面的变化,这就需要重新优化工艺。这些会导致更长的开发时间、成本和额外的不确定性。另一方面,尽早选择正确的溶剂可以增强化学选择性,避免额外的反应步骤,并简化产品的纯化。预测这些变化是更广泛地适应制造中绿色溶剂的重要基础能力。不幸的是,绿色溶剂中反应数据的缺乏是开发这种能力的主要障碍。因此,迫切需要基于传统溶剂的可用数据来预测绿色溶剂的反应性的机器学习模型。除了解决早期工艺开发的短期问题外,这些还将增加在发现阶段使用绿色溶剂的信心,支持复杂的合成路线规划工具,其中考虑副产物、杂质和纯化方法,并充当该项目将通过以下目标应对这些挑战: O1 通过整理具有可靠反应时间的反应数据并纳入速率定律,解决文献中反应性数据的稀缺问题。 O2 开发绿色溶剂的溶剂依赖性反应性和反应选择性预测模型。O3 基于工业相关反应的化学信息学分析生产一套标准底物,并收集其在绿色溶剂中的反应性数据。这些产出将对化学制造行业产生变革性影响,通过更短的开发时间提供快速、更可持续和更好的质量控制过程,并有信心预测绿色溶剂的反应结果。该项目将在化学信息学和人工智能/机器学习领域的工业合作伙伴的支持下进行,例如拉萨有限公司和分子一号。其成果将由高价值化学制造领域的最终用户合作伙伴指导和利用:阿斯利康、CatSci 和 Concept Life Science。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bao Nguyen其他文献

Multiple-Scale Visualization of Large Data Based on Hierarchical Clustering
基于层次聚类的大数据多尺度可视化
Requirements for building an ontology for autonomous robots
构建自主机器人本体的要求
  • DOI:
    10.1108/ir-02-2016-0059
  • 发表时间:
    2016-08-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Behzad Bayat;Julita Bermejo;J. Carbonera;T. Facchinetti;S. Fiorini;P. Gonçalves;V. Jorge;M. Habib;A. Khamis;Kamilo Melo;Bao Nguyen;J. Olszewska;L. Paull;Edson Prestes e Silva;S. Ragavan;G. SajadSaeedi;R. Sanz;M. Seto;B. Spencer;Amirkhosro Vosughi;Howard Li
  • 通讯作者:
    Howard Li
Isolation, purification and functional characterization of alpha-BnIA from Conus bandanus venom.
斑芋芋螺毒液中 α-BnIA 的分离、纯化和功能表征。
Interrupting Sitting Time in Postmenopausal Women: Protocol for the Rise for Health Randomized Controlled Trial
中断绝经后妇女的静坐时间:Rise for Health 随机对照试验方案
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Sheri J. Hartman;Lindsay Dillon;A. LaCroix;L. Natarajan;Dorothy D. Sears;N. Owen;D. Dunstan;J. Sallis;S. Schenk;M. Allison;Michelle Takemoto;Alexandra M. Herweck;Bao Nguyen;D. Rosenberg
  • 通讯作者:
    D. Rosenberg
FLT3/ITD Expression Increases Expansion, Survival and Entry into Cell Cycle of Human Hematopoietic Stem Cells.
FLT3/ITD 表达可增加人类造血干细胞的扩增、存活和进入细胞周期。
  • DOI:
    10.1182/blood.v104.11.484.484
  • 发表时间:
    2004-11-16
  • 期刊:
  • 影响因子:
    20.3
  • 作者:
    Li Li;O. Piloto;Kyu‐Tae Kim;Zhaohui Ye;Bao Nguyen;Xiaobing Yu;M. Levis;Linzhao Cheng;D. Small
  • 通讯作者:
    D. Small

Bao Nguyen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bao Nguyen', 18)}}的其他基金

Water as synthetic reaction medium: realising its green chemistry credential
水作为合成反应介质:实现绿色化学证书
  • 批准号:
    EP/S013768/1
  • 财政年份:
    2019
  • 资助金额:
    $ 202.57万
  • 项目类别:
    Research Grant

相似国自然基金

新型绿色溶剂高效清洁回收废旧荧光粉中稀土元素的研究
  • 批准号:
    52364042
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于绿色溶剂构筑高性能含金属有机骨架气体分离混合基质膜的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
无溶剂球磨反应绿色合成木质素基高分子的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于以天然油脂为溶剂绿色萃取天然抗氧化物的新型油脂体系构建及其抗氧化机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

PFI-RP: A Novel Plastic Waste Recovery, Based on Environmentally Friendly (Green) Solvents
PFI-RP:基于环保(绿色)溶剂的新型塑料废物回收
  • 批准号:
    2234450
  • 财政年份:
    2023
  • 资助金额:
    $ 202.57万
  • 项目类别:
    Standard Grant
Probing SNARE assembly and disassembly in vitro and in live cells
在体外和活细胞中探测 SNARE 组装和拆卸
  • 批准号:
    10679644
  • 财政年份:
    2023
  • 资助金额:
    $ 202.57万
  • 项目类别:
Assembly and Disassembly of Polymer Hybrids Using Green Solvents
使用绿色溶剂组装和拆卸聚合物杂化物
  • 批准号:
    RGPIN-2022-04911
  • 财政年份:
    2022
  • 资助金额:
    $ 202.57万
  • 项目类别:
    Discovery Grants Program - Individual
Platform technologies for sustainable manufacturing of smart textiles using natural polymers and bio-derived green solvents
使用天然聚合物和生物衍生绿色溶剂可持续制造智能纺织品的平台技术
  • 批准号:
    567994-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 202.57万
  • 项目类别:
    Postdoctoral Fellowships
Platform technologies for sustainable manufacturing of smart textiles using natural polymers and bio-derived green solvents
使用天然聚合物和生物衍生绿色溶剂可持续制造智能纺织品的平台技术
  • 批准号:
    567994-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 202.57万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了