Bio-fabrication of sustainable functional bacterial cellulose aerogel for building insulation
用于建筑隔热的可持续功能性细菌纤维素气凝胶的生物制造
基本信息
- 批准号:EP/X02041X/1
- 负责人:
- 金额:$ 31.83万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Climate change is undoubtedly the greatest challenge of our generation. The World Green Building Council is catalysing the construction and property industry to lead the transition to a net zero carbon-built environment. In the UK, the operation of buildings accounts for around 30 percent of emissions, mainly from heating, cooling and electricity use. Heating and cooling in buildings accounts for over 10% of global energy consumption. There is an increasing emphasis on energy efficiency and cutting carbon emissions from our homes and workplaces. The UK Government is keen to see energy efficiency in buildings improved and various initiatives and schemes offered for insulating domestic homes for building energy improvements. However, industrial synthetic insulation materials, such as polystyrene and polyurethane, dominate the building insulation industry. They are oil based polymerised polystyrene and the manufacturing of those materials is an energy intensive process. Moreover, all the synthetic insulation foams are not vapour permeable, which can cause dampness as well as decay in the wall. Some of them will release toxic hydrogen cyanide and isocyanates during a fire. Although interest in the use of bio-based insulation products is steadily increasing, the efficient thermal insulation renewable or biobased materials such as wood chips and sheep wools and recycled paper are generally inferior to that of fossil fuel-based materials such as expanded polystyrene and polyurethane foams. To meet the demand for a sustainable and net zero carbon building industry, there is a pressing need for innovative insulation materials that would facilitate low energy consumption and a minimal impact on the environment. This NIA proposal is to make breakthroughs in how to use renewable and degradable resources to replace petroleum derivatives production technology, reduce environmental damage, and achieve sustainable development. This proposal is a first step to transform the manufacture of building insulating materials using biotechnology to develop novel cellulose-based aerogel to reduce fossil energy demand and contribute to net zero carbon buildings. The fundamental challenge is to develop novel low cost and low energy intensive ambient drying methods to produce functional bacterial cellulose aerogels with flame retardant, insulation, and anti-bacterial properties, which will have key applications in the field of construction materials. The low cost and low energy intensive drying method using sodium bicarbonate will be studied. The effect of the processing and in particular, the challenges related to the removal of the solvent to generate low-density foams and aerogels on heat transfer properties will be investigated. An In-situ adaptive modification approach will be applied to address the challenges for using bacterial cellulose aerogel by incorporating functional chitosan in building insulation applications to provide the desired photo-catalytic self-cleaning, antibacterial and flame retardant properties. The interdisciplinary nature of proposal will build a real network for Bioengineering, building physics and Industry partners to work together and conduct research outside of their own discipline area to create a new generation of renewable and degradable bio-cellulose aerogel for energy efficient building. This research is currently at proof-of-concept stage and has high potential for impact with a wide array of applications in the future. This approach will enable the manufacture of insulation materials utilising waste, with little energy input and in ways which are carbon sequestering and non-polluting. It has enormous potential to produce renewable thermally insulating materials with significantly better heat transport properties than the currently commercially dominating materials such as expanded polystyrene, polyurethane foams, and glass wool.
气候变化无疑是我们这一代人面临的最大挑战。世界绿色建筑委员会正在推动建筑和房地产行业引领向净零碳建筑环境的过渡。在英国,建筑物的运营约占排放量的 30%,主要来自供暖、制冷和电力使用。建筑物的供暖和制冷占全球能源消耗的 10% 以上。人们越来越重视能源效率和减少家庭和工作场所的碳排放。英国政府热切希望看到建筑物能源效率得到提高,并提出各种旨在对住宅进行隔热以改善建筑能源的举措和计划。然而,聚苯乙烯和聚氨酯等工业合成保温材料在建筑保温行业中占据主导地位。它们是油基聚合聚苯乙烯,这些材料的制造是一个能源密集型过程。此外,所有合成保温泡沫都不透气,这会导致墙壁潮湿和腐烂。其中一些在火灾中会释放有毒的氰化氢和异氰酸盐。尽管人们对使用生物基隔热产品的兴趣正在稳步增加,但木屑、羊毛和再生纸等高效隔热可再生或生物基材料通常不如发泡聚苯乙烯和聚氨酯等化石燃料基材料泡沫。为了满足可持续和净零碳建筑业的需求,迫切需要创新的隔热材料,以促进低能耗和对环境的影响最小。 NIA的这项提案旨在突破如何利用可再生、可降解资源替代石油衍生物生产技术,减少环境破坏,实现可持续发展。该提案是利用生物技术改造建筑隔热材料制造的第一步,以开发新型纤维素基气凝胶,以减少化石能源需求并为净零碳建筑做出贡献。根本挑战是开发新型低成本、低能耗常温干燥方法来生产具有阻燃、绝缘和抗菌性能的功能性细菌纤维素气凝胶,这将在建筑材料领域具有关键应用。将研究使用碳酸氢钠的低成本、低能耗的干燥方法。将研究加工的影响,特别是与去除溶剂以生成低密度泡沫和气凝胶有关的挑战对传热性能的影响。将采用原位自适应改性方法,通过在建筑隔热应用中加入功能性壳聚糖来解决使用细菌纤维素气凝胶的挑战,以提供所需的光催化自清洁、抗菌和阻燃性能。该提案的跨学科性质将为生物工程、建筑物理学和行业合作伙伴建立一个真正的网络,共同努力并在自己的学科领域之外进行研究,为节能建筑创造新一代可再生和可降解的生物纤维素气凝胶。这项研究目前正处于概念验证阶段,具有对未来广泛应用产生影响的巨大潜力。这种方法将能够利用废物制造绝缘材料,只需很少的能量输入,并且以碳封存和无污染的方式制造。它具有生产可再生隔热材料的巨大潜力,其传热性能明显优于目前商业上占主导地位的材料,如发泡聚苯乙烯、聚氨酯泡沫和玻璃棉。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Cellulose/Chitosan Dual Cross-Linked Multifunctional and Resilient Hydrogel for Emergent Open Wound Management.
用于紧急开放性伤口处理的纤维素/壳聚糖双交联多功能弹性水凝胶。
- DOI:http://dx.10.1002/adhm.202304676
- 发表时间:2024
- 期刊:
- 影响因子:10
- 作者:Lu S
- 通讯作者:Lu S
A Simple and Effective Physical Ball-Milling Strategy to Prepare Super-Tough and Stretchable PVA@MXene@PPy Hydrogel for Flexible Capacitive Electronics.
一种简单有效的物理球磨策略,用于制备用于柔性电容电子产品的超坚韧和可拉伸的 PVA@MXene@PPy 水凝胶。
- DOI:10.1002/smll.202303038
- 发表时间:2023-07-20
- 期刊:
- 影响因子:13.3
- 作者:Zipeng Qin;Gang Zhao;Yaoyang Zhang;Zhiheng Gu;Yuhan Tang;J. T. Aladejana;Junna Ren;Yunhong Jiang;Zhanhu Guo;Xiangfang Peng;Xuehua Zhang;B. Xu;Tingjie Chen
- 通讯作者:Tingjie Chen
Vanillin Cross-Linked Chitosan Film with Controlled Release of Green Tea Polyphenols for Active Food Packaging.
用于活性食品包装的可控制释放绿茶多酚的香兰素交联壳聚糖薄膜。
- DOI:http://dx.10.1021/acsfoodscitech.3c00222
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Westlake JR
- 通讯作者:Westlake JR
Advancing pressure sensors performance through a flexible MXene embedded interlocking structure in a microlens array
通过微透镜阵列中灵活的 MXene 嵌入式互锁结构提高压力传感器性能
- DOI:10.1007/s12274-023-5727-6
- 发表时间:2023-05-20
- 期刊:
- 影响因子:9.9
- 作者:Tong Li;Zhenzong Xu;B. Xu;Zhanhu Guo;Yunhong Jiang;Xuehua Zhang;M. Bayati;T. Liu;Yan
- 通讯作者:Yan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yunhong Jiang其他文献
Deagglomeration testing of airborne nanoparticle agglomerates: Stability analysis under varied aerodynamic shear and relative humidity conditions
空气中纳米颗粒团聚体的解团聚测试:不同气动剪切和相对湿度条件下的稳定性分析
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Yaobo Ding;B. Stahlmecke;H. Kaminski;Yunhong Jiang;T. Kuhlbusch;M. Riediker - 通讯作者:
M. Riediker
ReNIC: Architectural Extension to SR-IOV I/O Virtualization for Efficient Replication
ReNIC:SR-IOV I/O 虚拟化的架构扩展,实现高效复制
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Yu Chen;Zhenhao Pan;Jinquan Dai;Yunhong Jiang - 通讯作者:
Yunhong Jiang
Porosity, Pore Size Distribution, Micro-structure
孔隙率、孔径分布、微观结构
- DOI:
10.1007/978-94-024-1031-0_2 - 发表时间:
2017-02-05 - 期刊:
- 影响因子:0
- 作者:
M. Lawrence;Yunhong Jiang - 通讯作者:
Yunhong Jiang
TiO2 nanobelts with ultra-thin mixed C/SiO coating as high-performance photo/photoelectrochemical hydrogen evolution materials
具有超薄混合C/SiO涂层的TiO2纳米带作为高性能光/光电化学析氢材料
- DOI:
10.1016/j.apsusc.2020.147861 - 发表时间:
2021-01-30 - 期刊:
- 影响因子:6.7
- 作者:
Yunhong Jiang;Huaji Pang;Xinglong Sun;Zhongmei Yang;Yanhuai Ding;Zhanpeng Liu;Ping Zhang - 通讯作者:
Ping Zhang
Effects of Composition on the Memory Characteristics of (HfO 2 ) x (Al 2 O 3 ) 1-x Based Charge Trap Nonvolatile Memory
成分对(HfO 2 ) x (Al 2 O 3 ) 1-x基电荷陷阱非易失性存储器存储特性的影响
- DOI:
10.4313/teem.2014.15.5.241 - 发表时间:
2014-10-25 - 期刊:
- 影响因子:1.9
- 作者:
Zhenjie Tang;D. Ma;Zhang Jing;Yunhong Jiang;Guixia Wang;Dongqiu Zhao;Rong Li;J. Yin - 通讯作者:
J. Yin
Yunhong Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
可持续供应链视角下新能源汽车制造企业的运营策略及鲁棒性分析
- 批准号:72271141
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
模型与数据混合驱动的制造系统可持续运维技术与方法研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于混合智能的可持续制造调度协同优化策略与方法
- 批准号:61973237
- 批准年份:2019
- 资助金额:57 万元
- 项目类别:面上项目
面向可持续制造的生产与维护及能源计划的耦合建模与优化研究
- 批准号:71801147
- 批准年份:2018
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
面向可持续制造的机械加工车间能效意识控制与优化研究
- 批准号:51705263
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
X-Brace - Lightweight, Sustainable, Circular, EV Chassis Fabrication
X-Brace - 轻质、可持续、圆形、电动汽车底盘制造
- 批准号:
10043751 - 财政年份:2022
- 资助金额:
$ 31.83万 - 项目类别:
Grant for R&D
SBIR Phase I: Environmentally Sustainable Manufacturing Technology for Fabrication of Radio Frequency (RF) Filter Products
SBIR 第一阶段:用于制造射频 (RF) 滤波器产品的环境可持续制造技术
- 批准号:
2151757 - 财政年份:2022
- 资助金额:
$ 31.83万 - 项目类别:
Standard Grant
Sustainable and Modular Design and Fabrication of a New Line of Outdoor Fitness Equipment with a Variable Resistance Module and Hybrid Solar Battery Energy Management Systems
具有可变阻力模块和混合太阳能电池能源管理系统的新型户外健身设备系列的可持续模块化设计和制造
- 批准号:
519829-2017 - 财政年份:2021
- 资助金额:
$ 31.83万 - 项目类别:
Applied Research and Development Grants - Level 2
Sustainable and Modular Design and Fabrication of a New Line of Outdoor Fitness Equipment with a Variable Resistance Module and Hybrid Solar Battery Energy Management Systems
具有可变阻力模块和混合太阳能电池能源管理系统的新型户外健身设备系列的可持续模块化设计和制造
- 批准号:
519829-2017 - 财政年份:2021
- 资助金额:
$ 31.83万 - 项目类别:
Applied Research and Development Grants - Level 2
Planning Grant: Engineering Research Center for Convergence of Scalable and Sustainable Digital Fabrication of Smart Textiles
规划资助:智能纺织品可扩展和可持续数字制造融合工程研究中心
- 批准号:
1937031 - 财政年份:2019
- 资助金额:
$ 31.83万 - 项目类别:
Standard Grant