Photonic Integrated Modulators for Aerospace and Data/Telecom

用于航空航天和数据/电信的光子集成调制器

基本信息

  • 批准号:
    EP/X011917/1
  • 负责人:
  • 金额:
    $ 41.58万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The modern society's need for fast and reliable communications supports the operation of industries, the Internet of things, transportation systems, entertainment electronics and allows the exchange of information and knowledge. Most services rely on optical interconnects that provide low-cost, high-capacity, low-power consumption network connections, including data centers, satellites, supercomputers, and the Internet.According to the Cisco report, the network traffic, including the Internet, has increased to 40 Zettabytes of data in 2020. To put the numbers in perspective, the total data generated from the beginning of humanity until 2003 is 0.5% of a Zettabyte. Furthermore, the ever-increasing data traffic accounted for 12% of total global emissions in 2020. As a result, it is crucial to develop efficient networks with higher capacity and reduced power consumption.This project will contribute to more efficient modulators, which will impact communication systems used in ground and satellites to increase capacity, reduce pollution, and improve the environmental sustainability of optical interconnects in aerospace systems, data centers, high-performance computers, and networks.This research will exploit the properties of indium arsenide quantum dots, including1. the radiation and temperature resilience to demonstrate a modulator for aerospace applications: indium arsenide quantum dot's radiation and temperature tolerance will outperform competing developments employing quantum wells, which 1. tolerates 10x and 5x orders of magnitude less radiation and temperature, 2. offers less bandwidth, and 3. high power consumption mainly when operating at high temperatures. This modulator will contribute to substitute current solutions, where heavy, power-hungry, and slow electrical interconnects by light, low-power consumption, and ultra-fast optical interconnects. The research will leverage 1. high-data rates satellite communications underpinning improved services, including fast Internet in remote and rural areas, and 2. the reduced size and weight will improve spacecraft fuel consumption and pollution towards net-zero emission.2. the resilience to threading dislocation, and material stress of quantum dots, will be exploited to grow the modulator over silicon to bring more efficient modulators to the silicon photonic platform. Due to the weak modulating effects in silicon, it is not possible to produce efficient modulators. On the other hand, quantum dots exhibit stronger effects than silicon leveraging more efficient modulators and will outperform current quantum well monolithic integration approaches due to their resilience when grown over silicon. This development will impact the commercial optical interconnects using silicon-based photonic integrated circuits (PICs) and current networks relying on them. By integrating the quantum dot modulator into the existing commercial silicon-based PICs, the performance of ground optical interconnects will be improved, underpinning more efficient networks in data centers, high-performance computers, and the Internet. VTT, a silicon photonic foundry, will provide the silicon PICs.To ensure commercial relevance of the research, this project partners with key industrial players in the aerospace and data/telecom sectors and includes Airbus, ALTER Technology, Bay Photonics, STAR-Dundee and VTT. Additionally, the work will be carried out at the National Epitaxy Facility and the Institute for Compound Semiconductors. Hence, this project is well placed on training researchers in relevant industrial problems, evaluating the technology's commercial relevance, and guiding future developments.
现代社会需要快速、可靠的通信来支持工业、物联网、交通系统、娱乐电子设备的运行,并允许信息和知识的交换。大多数服务依赖于光互连,提供低成本、高容量、低功耗的网络连接,包括数据中心、卫星、超级计算机和互联网。根据思科报告,包括互联网在内的网络流量已经到 2020 年,数据量将增加到 40 ZB。从角度来看,从人类诞生到 2003 年,产生的总数据仅占 ZB 的 0.5%。此外,不断增长的数据流量占2020年全球总排放量的12%。因此,开发具有更高容量和更低功耗的高效网络至关重要。该项目将有助于提高调制器的效率,这将影响用于地面和卫星的通信系统,以增加容量,减少污染,并提高航空航天系统、数据中心、高性能计算机和网络中光学互连的环境可持续性。这项研究将利用砷化铟量子点的特性,包括1.辐射和温度弹性,以展示航空航天应用调制器:砷化铟量子点的辐射和温度耐受性将优于采用量子阱的竞争开发,其 1. 耐受低 10 倍和 5 倍数量级的辐射和温度,2. 提供更少的带宽, 3.主要是在高温下工作时功耗高。该调制器将有助于替代当前的解决方案,其中重型、耗电且缓慢的电气互连被轻、低功耗和超快的光学互连取代。该研究将利用 1. 高数据速率卫星通信来支持改进的服务,包括偏远和农村地区的快速互联网,以及 2. 尺寸和重量的减小将改善航天器的燃料消耗和污染,实现净零排放。2.将利用量子点对线位错和材料应力的弹性来在硅上生长调制器,从而为硅光子平台带来更高效的调制器。由于硅的调制效应较弱,不可能生产高效的调制器。另一方面,量子点表现出比硅更强的效应,利用更高效的调制器,并且由于它们在硅上生长时的弹性,其性能将优于当前的量子阱单片集成方法。这一发展将影响使用硅基光子集成电路(PIC)的商业光学互连以及依赖它们的当前网络。通过将量子点调制器集成到现有的商用硅基 PIC 中,地面光学互连的性能将得到改善,为数据中心、高性能计算机和互联网中更高效的网络提供支持。 VTT 是一家硅光子代工厂,将提供硅 PIC。为了确保该研究的商业相关性,该项目与航空航天和数据/电信领域的主要工业参与者合作,包括空中客车公司、ALTER Technology、Bay Photonics、STAR-Dundee 和VTT。此外,这项工作将在国家外延设施和化合物半导体研究所进行。因此,该项目非常适合培训相关工业问题的研究人员、评估该技术的商业相关性并指导未来的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicolás Abadia其他文献

Nicolás Abadia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicolás Abadia', 18)}}的其他基金

Efficient Integrated Photonic Phase Shifters for Data/Telecom and Quantum Applications
适用于数据/电信和量子应用的高效集成光子移相器
  • 批准号:
    EP/Y00082X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.58万
  • 项目类别:
    Research Grant

相似国自然基金

数据与知识融合驱动的晶圆图缺陷生成式检测模型研究
  • 批准号:
    52375485
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
融合检监测数据与有限元自动建模的桥梁结构分析评估理论
  • 批准号:
    52378289
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
深度融合人机智能的研究生学术能力评价、归因与提升路径研究
  • 批准号:
    62377008
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
检监测数据融合驱动的混凝土斜拉桥既有裂缝智能诊断数字孪生系统研究
  • 批准号:
    52378288
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
稀有循环肿瘤细胞形-电特征融合的超高精度检测方法及装置研究
  • 批准号:
    52375562
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Optical frequency comb generation using integrated silicon photonic modulators
使用集成硅光子调制器生成光学频率梳
  • 批准号:
    573752-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 41.58万
  • 项目类别:
    University Undergraduate Student Research Awards
Optical frequency comb generation using integrated silicon photonic modulators
使用集成硅光子调制器生成光学频率梳
  • 批准号:
    573752-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 41.58万
  • 项目类别:
    University Undergraduate Student Research Awards
Growth and integration of phase change metal-chalcogenide semiconductors into optical fiber and waveguide integrated nanophotonic metamaterial modulators
相变金属硫族化物半导体的生长和集成到光纤和波导集成纳米光子超材料调制器中
  • 批准号:
    561145-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 41.58万
  • 项目类别:
    Alliance Grants
Growth and integration of phase change metal-chalcogenide semiconductors into optical fiber and waveguide integrated nanophotonic metamaterial modulators
相变金属硫族化物半导体的生长和集成到光纤和波导集成纳米光子超材料调制器中
  • 批准号:
    561145-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 41.58万
  • 项目类别:
    Alliance Grants
Growth and integration of phase change metal-chalcogenide semiconductors into optical fiber and waveguide integrated nanophotonic metamaterial modulators
相变金属硫族化物半导体的生长和集成到光纤和波导集成纳米光子超材料调制器中
  • 批准号:
    561145-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 41.58万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了