From single-cell transcriptomic to single-cell fluxomic: characterising metabolic dysregulations for breast cancer subtype classification
从单细胞转录组到单细胞通量组:表征乳腺癌亚型分类的代谢失调
基本信息
- 批准号:EP/Y001613/1
- 负责人:
- 金额:$ 19.63万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Despite the recent developments in breast cancer treatments, the high variability of cancer cells and their related drug resistance still pose a huge obstacle to improving clinical outcomes. It is now well-known that cancer cells must reprogram their cellular metabolism (chemical processes that occur within the cell to maintain life) to support rapid proliferation and promote acquired drug resistance. However, the underlying mechanisms regulating such biological changes are neither fully understood nor sufficiently treated. Only recently, with the advent of single cell analysis (a novel technique that allows the analysis of individual cancer cells), it has been possible to analyse changes at the cellular level that have helped in identifying four main breast cancer subtypes (i.e., Luminal A, Luminal B, TNB, and HER2 positive) and developing different treatment routes. However, patient survival remains low - especially for the most aggressive breast cancer subtypes - since cellular changes cannot be easily connected to an alteration in the metabolic state that promotes drug resistance. Moreover, the lack of specific tools to analyse a vast quantity of single cell metabolic profiles makes single-cell analysis at the metabolic level still impractical. This proposal aims at initiating an international collaboration between Teesside University (UK) and Cornell University (US) to characterise the metabolic profile of 32 different breast cancer cell types (i.e., cell lines) from the four main breast cancer subtypes to identify metabolic dysregulations and allow informed treatment decisions. Advanced computation techniques (i.e., artificial intelligence) will be applied to identify the metabolic reactions and changes responsible for cancer progression in each cancer subtype. The final objective of the proposed collaboration will be to elucidate the main differences among breast cancer subtypes at the metabolic level to inform the development of targeted drugs and support clinical decisions. First, mathematical techniques will be applied to develop metabolic models (through a set of mathematical equations) of 32 different breast cancer cell lines. These 32 models will mathematically describe the metabolic reactions taking place inside the different cancer cells. This will be achieved by integrating the expertise in metabolic modelling of the PI (Dr Occhipinti) with the knowledge of single cell analysis of the International Partner (Dr Betel).Second, advanced computational techniques will be applied to identify the key features affecting the proliferation of each of the 32 cancer cell types. Such features will include a set of biological elements (i.e., information related to cancer metabolism) specific to each cell type, which can be used to predict cell-specific drug resistance or inform clinical decisions. Finally, the selected key features (e.g. the metabolic reactions that are contributing the most to the growth of each cancer cell type) will be validated through computational and lab experiments and shared with breast cancer clinicians and experts through regular meetings and discussions that will be arranged during the project. Specifically, the academic team will coordinate a wide range of activities, including regular meetings with breast cancer experts from the NHS, designed to provide feedback on the developed computational model through knowledge and skills exchange while promoting connectivity across different sectors both in the medical and computational areas. The proposed project brings together academics from two centres of excellence in the healthcare sector (i.e., Weill Cornell Medicine at Cornell University and the National Horizon Centre at Teesside University), who have a strong track record in working with cell analysis, metabolic modelling, and artificial intelligence to better understand the metabolic mechanisms of cancer development and improve cancer outcomes.
尽管乳腺癌治疗最近取得了进展,但癌细胞的高度变异性及其相关的耐药性仍然对改善临床结果构成巨大障碍。现在众所周知,癌细胞必须重新编程其细胞代谢(细胞内发生的维持生命的化学过程)以支持快速增殖并促进获得性耐药性。然而,调节此类生物变化的潜在机制尚未被完全理解或得到充分治疗。直到最近,随着单细胞分析(一种允许分析单个癌细胞的新技术)的出现,分析细胞水平的变化成为可能,这有助于识别四种主要的乳腺癌亚型(即 Luminal A) 、Luminal B、TNB 和 HER2 阳性)并开发不同的治疗途径。然而,患者的生存率仍然很低,特别是对于最具侵袭性的乳腺癌亚型,因为细胞变化不容易与促进耐药性的代谢状态的改变联系起来。此外,缺乏分析大量单细胞代谢谱的特定工具使得代谢水平的单细胞分析仍然不切实际。该提案旨在启动蒂赛德大学(英国)和康奈尔大学(美国)之间的国际合作,以表征来自四种主要乳腺癌亚型的 32 种不同乳腺癌细胞类型(即细胞系)的代谢特征,以识别代谢失调和做出明智的治疗决定。将应用先进的计算技术(即人工智能)来识别导致每种癌症亚型癌症进展的代谢反应和变化。拟议合作的最终目标是阐明乳腺癌亚型在代谢水平上的主要差异,为靶向药物的开发提供信息并支持临床决策。首先,将应用数学技术(通过一组数学方程)开发 32 种不同乳腺癌细胞系的代谢模型。这 32 个模型将从数学上描述不同癌细胞内部发生的代谢反应。这将通过将 PI(Occhipinti 博士)的代谢建模专业知识与国际合作伙伴(Betel 博士)的单细胞分析知识相结合来实现。其次,将应用先进的计算技术来识别影响增殖的关键特征32 种癌细胞类型中的每一种。这些特征将包括一组特定于每种细胞类型的生物元素(即与癌症代谢相关的信息),可用于预测细胞特异性耐药性或为临床决策提供信息。最后,选定的关键特征(例如对每种癌细胞类型生长贡献最大的代谢反应)将通过计算和实验室实验进行验证,并通过定期会议和讨论与乳腺癌临床医生和专家分享项目期间。具体来说,学术团队将协调广泛的活动,包括与 NHS 的乳腺癌专家定期举行会议,旨在通过知识和技能交流提供对开发的计算模型的反馈,同时促进医疗和计算领域不同部门之间的联系地区。拟议的项目汇集了来自医疗保健领域两个卓越中心(即康奈尔大学威尔康奈尔医学中心和蒂赛德大学国家地平线中心)的学者,他们在细胞分析、代谢建模和人工智能可以更好地了解癌症发展的代谢机制并改善癌症结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Annalisa Occhipinti其他文献
Surrogate models for seismic and pushover response prediction of steel special moment resisting frames
钢特殊抗矩框架地震和推覆响应预测的替代模型
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.5
- 作者:
Delbaz Samadian;I. B. Muhit;Annalisa Occhipinti;Nashwan Dawood - 通讯作者:
Nashwan Dawood
Mechanism-aware and multimodal AI: beyond model-agnostic interpretation.
机制感知和多模式人工智能:超越模型不可知的解释。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:19
- 作者:
Annalisa Occhipinti;Suraj Verma;Le Minh Thao Doan;Claudio Angione - 通讯作者:
Claudio Angione
Annalisa Occhipinti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
应用单细胞以及空间转录组学技术研究AGEs-RAGE-DIAPH1通路在2型糖尿病促进椎间盘退变中的作用及不同部位的表达特点
- 批准号:32371517
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于MRI-病理WSI-单细胞转录组测序多尺度信息的乳腺癌新辅助化疗腋窝淋巴结pCR智能预测及其生物学机制研究
- 批准号:82371933
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于单细胞和空间转录组学数据的细胞通讯网络构建研究
- 批准号:62362062
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
基于单细胞转录组学的玫瑰痤疮相关角质形成细胞亚群通过干扰素通路调控玫瑰痤疮发病的机制研究
- 批准号:82303992
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于大规模平行细胞模型的单细胞药物转录组学技术解析肝癌药物响应异质性的分子机理
- 批准号:82373972
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Unravelling the meiotic single-cell transcriptomic atlas for the control of recombination.
揭示减数分裂单细胞转录组图谱以控制重组。
- 批准号:
BB/Y001591/1 - 财政年份:2024
- 资助金额:
$ 19.63万 - 项目类别:
Research Grant
Analysis of Paediatric Medulloblastoma cellular heterogeneity using Single-cell transcriptomic profiling for improved therapeutic strategies
使用单细胞转录组分析分析儿科髓母细胞瘤细胞异质性以改进治疗策略
- 批准号:
2882274 - 财政年份:2023
- 资助金额:
$ 19.63万 - 项目类别:
Studentship
Defining the single cell transcriptomic landscape of intervertebral disc cells in development and disease to inform novel therapeutic interventions
定义发育和疾病中椎间盘细胞的单细胞转录组景观,为新的治疗干预措施提供信息
- 批准号:
MR/W019418/1 - 财政年份:2023
- 资助金额:
$ 19.63万 - 项目类别:
Research Grant
Elucidating the critical role of Wee1 in GIST
阐明 Wee1 在 GIST 中的关键作用
- 批准号:
10681775 - 财政年份:2023
- 资助金额:
$ 19.63万 - 项目类别:
Spatial and Single Cell Transcriptomics Approach to Understand Neuron-Oligodendrocyte Communication in Human Synaptic Development
了解人类突触发育中神经元-少突胶质细胞通讯的空间和单细胞转录组学方法
- 批准号:
10646970 - 财政年份:2023
- 资助金额:
$ 19.63万 - 项目类别: