Micron-scale, chemically-controlled, auto-injection systems for at-home drug delivery

用于家庭给药的微米级化学控制自动注射系统

基本信息

  • 批准号:
    EP/X04128X/1
  • 负责人:
  • 金额:
    $ 143.03万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Traditional pharmaceutical drugs are small molecules that treat the symptoms of a disease. Biopharmaceuticals are larger molecules, for example, peptides, proteins and antibodies, which target the underlying mechanisms and pathways of a disease that are not accessible with traditional drugs. Recently, there have been rapid and revolutionary developments in this field of biotechnology. Therapeutic peptides, proteins and antibodies are expected to be used extensively in the coming years as vaccines and as treatments for cancer, high blood pressure, pain, blood clots and many other illnesses. However, one of the major challenges to successful clinical use of these so-called "biotech" molecules is their efficient delivery to the site of action. The body breaks these medicines down when they are swallowed and they are generally not well-absorbed into the blood. As a result, they have to be given frequently by injection, which is painful and means that these drugs are usually only administered in hospital. Long-acting formulations of small molecules, increasingly to the fore in treating HIV and TB, must also be injected. The COVID-19 pandemic has greatly increased the need for self-administration of injectables at home, away from healthcare settings, where transmission can have dire consequences and healthcare systems are backlogged. Complexities of storage, distribution and administration, needle phobia and the difficulty of domestic disposal of potentially-contaminated sharps all contribute to an urgent need for alternative delivery modes for injectable drugs/vaccines. We have developed a novel type of transdermal patch that by-passes the skin's barrier layer, which is called the stratum corneum. The patch surface has many tiny needles that pierce the stratum corneum without causing any pain - The sensation is said to feel like a cat's tongue. These needles create tiny holes in the stratum corneum, through which drugs/vaccines can enter the body from a unique reservoir system powered by simple and safe chemistry. Our unique technology could potentially revolutionise the delivery of peptides and proteins, antibodies, vaccines, as well as that of long-acting small molecules that cannot currently be delivered across the skin. In the UK, the NHS stands to benefit from at-home dosing of medicines/vaccines that normally require a healthcare worker's time and expertise. Ultimately, health-related-quality-of-life will be enhanced through improved disease control by empowered patients. At-home treatment, keeping people away from healthcare settings, will also help reduce spread of COVID-19 and other respiratory pathogens (e.g. influenza, Strep A) to vulnerable in-patients and healthcare workers whilst also, importantly, allowing NHS staff to focus on overcoming the backlog in normal diagnosis and treatment of non-COVID disease.We have attracted considerable interest and funding from industry to develop our first and second generation microneedle technologies for a range of applications. However, to facilitate the translational development of the novel third generation technology to be investigated here and maximise value to the UK, it is essential to develop methods to fully understand these new high-dose microneedles. We will ensure that their efficacy is guaranteed by employing advanced computer-guided device design and rationalisation, coupled with extensive laboratory investigation. Ultimately, commercialisation of the technology will be the primary route by which UK industry, the NHS and patients will derive benefits.
传统药物是治疗疾病症状的小分子。生物药物是较大的分子,例如肽,蛋白质和抗体,它们针对传统药物无法获得的疾病的基本机制和途径。最近,在这一生物技术领域,已经有了迅速而革命性的发展。预计在未来几年中,预计将广泛使用治疗肽,蛋白质和抗体作为癌症,高血压,疼痛,血凝块和许多其他疾病的治疗方法。但是,成功临床使用这些所谓的“生物技术”分子的主要挑战之一是它们有效地递送到行动部位。当这些药物吞咽时,身体会破坏这些药物,并且通常不会充分吸收血液。结果,必须经常通过注射给予它们,这很痛苦,这意味着这些药物通常仅在医院服用。还必须注射小分子的长效制剂,越来越多地治疗艾滋病毒和结核病。 COVID-19大流行极大地增加了对家里注射材料的自我管理的需求,远离医疗保健环境,在这种情况下,传播可能会带来可怕的后果,医疗保健系统被积压了。储存,分配和给药的复杂性,针恐惧症以及国内处置潜在污染尖锐的困难都有助于迫切需要对可注射药物/疫苗的替代输送模式。我们开发了一种新型的透皮贴片,该贴片绕过皮肤的屏障层,这称为角质层。斑块表面有许多微小的针,可以刺穿角膜层而不会引起任何疼痛 - 据说感觉就像是猫的舌头。这些针头在角质层中产生微小的孔,药物/疫苗可以通过由简单和安全的化学供电的独特储层系统进入人体。我们独特的技术可能会彻底改变肽和蛋白质,抗体,疫苗以及目前无法在皮肤上递送的长效小分子的递送。在英国,NHS将受益于通常需要医护人员的时间和专业知识的药品/疫苗的剂量。最终,通过有能力的患者改善疾病的控制,将增强与健康相关的寿命。在家治疗,使人们远离医疗保健环境,还将有助于减少Covid-19和其他呼吸道病原体的传播(例如流感,链球菌,链球菌A)易受伤害的住院和医护人员,同样重要的是,NHS员工可以专注于越来越多的疾病,使我们的养育型不合适,并吸引了不稳定的疾病。用于一系列应用的微针技术。但是,为了促进新型第三代技术的转化发展,并最大程度地提高了英国的价值,必须开发完全了解这些新的高剂量微针的方法。我们将通过采用先进的计算机制定设备设计和合理化以及广泛的实验室调查来确保其功效确保其功效。最终,该技术的商业化将是英国行业,NHS和患者将获得收益的主要途径。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Donnelly其他文献

The Effects of a Day/Night Shift System on Intern Sleep, Work Load, and Conference Attendance
  • DOI:
    10.1016/j.acap.2012.03.017
  • 发表时间:
    2012-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kristen E. Day;Irene Kocolas;Ryan Donnelly;Marta King;Adam Stevenson;Ameet Daftary;Wendy L. Hobson;James F. Bale
  • 通讯作者:
    James F. Bale
The Ground Truth Is Out There: Improved Coronary Artery Luminal Stenosis Evaluation with Photon-counting Detector CT.
真相就在那里:利用光子计数探测器 CT 改进冠状动脉管腔狭窄评估。
  • DOI:
    10.1148/radiol.233066
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    19.7
  • 作者:
    David J Murphy;Ryan Donnelly
  • 通讯作者:
    Ryan Donnelly

Ryan Donnelly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan Donnelly', 18)}}的其他基金

Optimisation of microneedle insertion and understanding the implications of repeat application as tools to support translation
优化微针插入并了解重复应用作为支持翻译工具的影响
  • 批准号:
    EP/V047221/1
  • 财政年份:
    2021
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Research Grant
Nanoengineered microneedle arrays for enhanced delivery of long-acting HIV medicines
纳米工程微针阵列可增强长效艾滋病毒药物的输送
  • 批准号:
    EP/S028919/1
  • 财政年份:
    2019
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Research Grant
Nanoengineered microneedle arrays for enhanced plasmonic photothermal therapy of basal cell carcinoma.
纳米工程微针阵列用于增强基底细胞癌的等离子体光热疗法。
  • 批准号:
    EP/P034063/1
  • 财政年份:
    2017
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Research Grant
Manufacture and applicator technologies for commercialisation of polymeric microneedle arrays
聚合物微针阵列商业化的制造和施用器技术
  • 批准号:
    BB/K020234/1
  • 财政年份:
    2013
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Research Grant
Microneedle-mediated enhanced Raman therapeutic drug monitoring
微针介导的增强拉曼治疗药物监测
  • 批准号:
    EP/H021647/1
  • 财政年份:
    2010
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Research Grant
Transdermal delivery of macromolecules mediated by microneedle arrays
微针阵列介导的大分子透皮递送
  • 批准号:
    BB/E020534/1
  • 财政年份:
    2007
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Research Grant

相似国自然基金

面向大规模强化学习任务的预测控制理论与方法研究
  • 批准号:
    62376179
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度强化学习的大规模动态车辆路径规划研究
  • 批准号:
    62306201
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于大规模模型和强化学习的多粒度软件漏洞检测关键技术研究
  • 批准号:
    62302125
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模路网交通信号控制的分布外元强化学习机制研究
  • 批准号:
    62372089
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超疏水集成微柱电化学传感器用于传染病大规模筛查
  • 批准号:
    22304095
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Characterizing chemical threat agent exposures using a lung-on-a-chip platform and multi-omic analysis of common pathophysiological mechanisms
使用芯片肺平台和常见病理生理机制的多组学分析来表征化学威胁剂暴露
  • 批准号:
    10708553
  • 财政年份:
    2023
  • 资助金额:
    $ 143.03万
  • 项目类别:
Distributed video coding and deep learning using convolutional sparse dictionary generated with large scale datasets
使用大规模数据集生成的卷积稀疏字典进行分布式视频编码和深度学习
  • 批准号:
    23K11159
  • 财政年份:
    2023
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Large-scale sparse learning using asynchronous architecture for interpretable model
使用异步架构进行可解释模型的大规模稀疏学习
  • 批准号:
    23K11213
  • 财政年份:
    2023
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-regular robust methods for locally stationary generalized unit root related processes and their applications to large-scale data
局部平稳广义单位根相关过程的非正则鲁棒方法及其在大规模数据中的应用
  • 批准号:
    23K11004
  • 财政年份:
    2023
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and implementation of a small-scale and highly efficient genomic selection method using "look-ahead" based on reinforcement learning
基于强化学习的“前瞻”小规模高效基因组选择方法的开发和实施
  • 批准号:
    22H02306
  • 财政年份:
    2022
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了