NAfANE: New Approaches for Approximate Nash Equilibria
NAfANE:近似纳什均衡的新方法
基本信息
- 批准号:EP/X039862/1
- 负责人:
- 金额:$ 63.73万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The main goal of this proposal is to develop new techniques with the aim of identifying the precise cut-off between tractable and intractable approximations of Nash equilibria (NE), the foundational solution-concept in Game Theory and Economics. A Nash equilibrium is a situation where no player can increase their payoff by unilaterally deviating. Ultimately our target is to develop new approaches that will enhance our understanding of equilibrium computation, the most fundamental problem in Algorithmic Game Theory. We will settle the tractability frontier of equilibrium computation for three general classes of games that are of interest to a wide variety of researchers within the communities of Economics, Mathematics, Artificial Intelligence, Machine Learning, and Computer Science.- Bimatrix Games: This is the fundamental class of games, played between two players, that has been studied extensively over the years.- Polymatrix Games: This class captures many-player games with an underlying network structure, where every node corresponds to a player, and every player interacts with the players in their neighborhood as defined by the network.This type of games received a lot of attention due to numerous applications ranging from building-blocks to hardness reductions, to applications in protein function prediction and semi-supervised learning.- Bayesian Games: This is the foundational class of games with incomplete information. We will focus on the cornerstone subclass of two-player Bayesian games. This family of games is closely related to polymatrix games, since it can be represented as a polymatrix game over a bipartite network.While there exist several results, both positive and negative, for finding approximate equilibria in the above-mentioned classes of games, the gaps between intractability and polynomial-time approximability are still large. In addition, there exist several ``well-behaved'' families of these games that cannot be captured by the current inapproximability results. These families of games could admit a polynomial-time algorithm that has not been discovered yet. The objective of this proposal is to rectify this situation: close the gaps between lower bounds and upper bounds, and identify parameters for each class of games that allow for polynomial-time algorithms.
该提案的主要目标是开发新技术,目的是确定NASH Eqeilibria(NE)(游戏理论和经济学中的基础解决方案)概念的可诉说和顽固近似之间的精确截止。纳什均衡是一种情况,没有球员可以通过单方面偏差来增加收益。最终,我们的目标是开发新方法,以增强我们对均衡计算的理解,这是算法游戏理论中最根本的问题。我们将为三个一般类别的游戏均衡的典型性边界,在经济学,数学,数学,人工智能,机器学习和计算机科学社区中引起的各种研究人员都感兴趣。-bimatrix游戏:这是两个玩家之间的基本阶级,在这两个玩家之间进行了广泛的阶级,这些游戏已经在整个游戏中进行了广泛研究。结构,每个节点都与一个玩家相对应,并且每个玩家都与网络定义的相互作用。这种类型的游戏受到了很多关注,这是由于许多应用程序从构建障碍到降低硬度的降低到蛋白质功能预测和半超级监督学习的应用。我们将专注于两人贝叶斯游戏的基石子类。这个游戏系列与Polymatrix游戏密切相关,因为它可以用作两部分网络上的多头发游戏。尽管在上述游戏类别中找到了近似均衡的游戏,但在上述游戏类别中,有几个结果,即可行性和多态度时近似值之间的差距仍然很大。此外,这些游戏的几个``行为举止''家族无法被当前的无XIBIBIBIBITIOS结果捕获。这些游戏家族可以承认尚未发现的多项式时间算法。该建议的目的是纠正这种情况:缩小下限和上限之间的差距,并确定允许多项式时间算法的每类游戏的参数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Argyrios Deligkas其他文献
Some coordination problems are harder than others
有些协调问题比其他问题更难
- DOI:
10.48550/arxiv.2311.03195 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Argyrios Deligkas;E. Eiben;G. Gutin;Philip R. Neary;Anders Yeo - 通讯作者:
Anders Yeo
Theory of Computing
计算理论
- DOI:
10.4086/toc - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana - 通讯作者:
Varun Suriyanarayana
The Parameterized Complexity of Connected Fair Division
连接公平划分的参数化复杂性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Argyrios Deligkas;E. Eiben;R. Ganian;Thekla Hamm;S. Ordyniak - 通讯作者:
S. Ordyniak
Lipschitz Continuity and Approximate Equilibria
Lipschitz 连续性和近似平衡
- DOI:
10.1007/s00453-020-00709-3 - 发表时间:
2015 - 期刊:
- 影响因子:1.1
- 作者:
Argyrios Deligkas;John Fearnley;P. Spirakis - 通讯作者:
P. Spirakis
Directed Graph Minors and Serial-Parallel Width
有向图次要和串并宽度
- DOI:
10.4230/lipics.mfcs.2018.44 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Argyrios Deligkas;R. Meir - 通讯作者:
R. Meir
Argyrios Deligkas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
疫苗接种后和自然感染后新冠病毒特异性T细胞应答的研究
- 批准号:32370945
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于免疫代谢机制的新污染物毒性高通量分析方法研究
- 批准号:22306033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
煤中甲烷微孔填充动力学模型及新的孔隙测定方法研究
- 批准号:52374240
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于分子网络和高分辨质谱的水体新污染物筛查方法研究
- 批准号:22306082
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基因表达调控新元件识别及其调控网络推断的智能方法研究
- 批准号:62302148
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
New approaches to training deep probabilistic models
训练深度概率模型的新方法
- 批准号:
2613115 - 财政年份:2025
- 资助金额:
$ 63.73万 - 项目类别:
Studentship
慣性質量効果を利用した革新的な建物倒壊防止補強方法の提案と効果実証
利用惯性质量效应防止建筑物倒塌的创新加固方法的提出和有效性验证
- 批准号:
24K07648 - 财政年份:2024
- 资助金额:
$ 63.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
- 批准号:
EP/Y032640/1 - 财政年份:2024
- 资助金额:
$ 63.73万 - 项目类别:
Research Grant
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
$ 63.73万 - 项目类别:
EU-Funded
がん治癒切除術後の再発恐怖と遷延性慢性疼痛双方を標的とした革新的なスマホ心理療法
创新的智能手机心理疗法针对癌症治愈性切除后复发的恐惧和持续的慢性疼痛
- 批准号:
23K25738 - 财政年份:2024
- 资助金额:
$ 63.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)