Thermal monitoring instrumentation for metal additive manufacturing - PYRAM

用于金属增材制造的热监测仪器 - PYRAM

基本信息

  • 批准号:
    EP/W025035/1
  • 负责人:
  • 金额:
    $ 122.56万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The aim of this proposal is to develop a temperature measurement instrument for use in a wire based additive manufacturing (AM) processes. The instrument will use a lensed fibre-optic cable fed to a camera-based design, allowing it to operate in different deposition environments and will be compatible with a variety of metals. The system will provide real-time temperature images of the AM melt pool that will improve the effectiveness of the additive manufacturing processes. In turn, this will result in high-quality AM parts and improved productivity via quality control enhancement. Metal AM of large components will have a major impact on the production of specialist components due to its inherent cost and material savings as well as offering a route to easily changing the design and allowing component customisation. Metal components are formed by feeding a wire into a welding arc, or laser, which is then moved to deposit molten metal in predetermined positions and a structure is built by doing this in repeating layers. Structures built using this technique can have excellent material properties, but due to variations in the temperature of the melt pool, the internal metal structure can sometimes be irregular, which causes variations in the final mechanical properties of the component. Temperature measurement of the melt pool surface addresses these variations by ensuring the production of; a constant material internal structure, repeatable layer dimensions and component temperature heating/ cooling cycles, thereby ensuring good component quality control. If the metal surface temperature can be specified, measured and controlled, then this guarantees the mechanical properties of the component are within the required specifications.Thermal camera measurements of melt pools is challenging as the temperatures can be in excess of 2400 deg. C. Also, the intense light from the arc can blind the camera or degrade measurement accuracy. Commercial thermal cameras used for AM processes tend to have large, fixed lenses which makes installation of the lensed camera difficult in the limited space around typical AM torches as they need to be line-of-sight with the melt pool, to view it clearly. To overcome these challenges, a novel optical fibre two-wavelength camera instrument, tailored for the wire-based AM process operating over the range 800-2400 deg. C, will be developed, which is not blinded by the intense arc light and has compact and flexible imaging optics. This allows the camera head to be used in restricted spaces but the camera instrumentation itself can be located some metres away from the AM processing tool, on the robot arm. This instrument could also be usefully used with other AM welding processes with some adaption, and applications where physical access is very restricted e.g. gas turbine engines. The two-wavelength design uses an optical-fibre bundle and a camera together with special filters to block the unwanted light but transmit two image "colours". These two colours are then imaged on the same camera sensor separately. The temperature of the images is determined by the ratio of the two light signals. This ensures a wide operating temperature range, without requiring special knowledge of the thermal properties of the melt pool itself. The instrument design overcomes the challenges presented by the intense light and restricted access. Custom software will produce a real-time temperature map of the melt-pool, and allow the instrument to be then used with the process software controlling the AM machine. This will allow power feedback control of the welding arc and hence limit significant variations in the melt pool temperatures. The research will develop a state-of-the-art instrument addressing one of the major challenges facing metal AM processes and provides a route to fabricating reproducible and specification compliant components.
该提案的目的是开发一种用于基于线材的增材制造 (AM) 工艺的温度测量仪器。该仪器将使用带透镜的光纤电缆,馈入基于相机的设计,使其能够在不同的沉积环境中运行,并且与各种金属兼容。该系统将提供增材制造熔池的实时温度图像,从而提高增材制造工艺的效率。反过来,这将带来高质量的增材制造零件,并通过增强质量控制提高生产率。大型部件的金属增材制造将对专业部件的生产产生重大影响,因为其固有的成本和材料节省,以及提供轻松更改设计和允许部件定制的途径。金属部件是通过将焊丝送入焊接电弧或激光而形成的,然后移动焊丝以在预定位置沉积熔融金属,并通过重复层来构建结构。使用这种技术构建的结构可以具有优异的材料性能,但由于熔池温度的变化,内部金属结构有时可能不规则,从而导致部件的最终机械性能发生变化。熔池表面的温度测量通过确保生产来解决这些变化;恒定的材料内部结构、可重复的层尺寸和部件温度加热/冷却循环,从而确保良好的部件质量控制。如果可以指定、测量和控制金属表面温度,则可以保证部件的机械性能符合要求的规格。熔池的热像仪测量具有挑战性,因为温度可能超过 2400 摄氏度。 C. 此外,电弧发出的强光会使相机失明或降低测量精度。用于增材制造工艺的商用热像仪往往具有大型固定镜头,这使得在典型增材制造火炬周围的有限空间内安装镜头相机变得困难,因为它们需要与熔池处于视线范围内,才能清晰地观察到它。为了克服这些挑战,一种新型光纤双波长相机仪器专为在 800-2400 度范围内运行的基于线的 AM 工艺而定制。 C,将被开发,不会被强烈的弧光致盲,并且具有紧凑和灵活的成像光学系统。这使得摄像头可以在有限的空间内使用,但摄像头仪器本身可以位于距离机器人手臂上的增材制造处理工具几米远的地方。该仪器还可以与其他增材制造焊接工艺(经过一些调整)以及物理访问非常受限的应用(例如焊接)一起使用。燃气涡轮发动机。双波长设计使用光纤束和相机以及特殊滤光片来阻挡不需要的光,但传输两种图像“颜色”。然后,这两种颜色分别在同一相机传感器上成像。图像的温度由两个光信号的比率确定。这确保了较宽的工作温度范围,而无需了解熔池本身的热性能的特殊知识。该仪器的设计克服了强光和限制访问带来的挑战。定制软件将生成熔池的实时温度图,并允许仪器与控制增材制造机器的工艺软件一起使用。这将允许焊接电弧的功率反馈控制,从而限制熔池温度的显着变化。该研究将开发一种最先进的仪器,解决金属增材制造工艺面临的主要挑战之一,并提供制造可重复且符合规范的组件的途径。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ralph Tatam其他文献

Ralph Tatam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ralph Tatam', 18)}}的其他基金

Integrated optical position and orientation sensing for manufacturing robotics
用于制造机器人的集成光学位置和方向传感
  • 批准号:
    EP/S01313X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 122.56万
  • 项目类别:
    Research Grant
Point of care diagnosis of gastrointestinal disease using laser spectroscopy
使用激光光谱对胃肠道疾病进行即时诊断
  • 批准号:
    EP/P015603/1
  • 财政年份:
    2017
  • 资助金额:
    $ 122.56万
  • 项目类别:
    Research Grant
Engineering Photonics: Sensor and Instrumentation Development and Application
工程光子学:传感器和仪器仪表的开发与应用
  • 批准号:
    EP/N002520/1
  • 财政年份:
    2015
  • 资助金额:
    $ 122.56万
  • 项目类别:
    Research Grant
Novel optical instrumentation for robotic manufacturing
用于机器人制造的新型光学仪器
  • 批准号:
    EP/M020401/1
  • 财政年份:
    2015
  • 资助金额:
    $ 122.56万
  • 项目类别:
    Research Grant
Improved post-operative vision using advanced optical measurement techniques
使用先进的光学测量技术改善术后视力
  • 批准号:
    EP/M010473/1
  • 财政年份:
    2015
  • 资助金额:
    $ 122.56万
  • 项目类别:
    Research Grant
OCT for 2D and 3D velocity measurement in micro-fluidic flows
用于微流体流动中 2D 和 3D 速度测量的 OCT
  • 批准号:
    EP/L014637/1
  • 财政年份:
    2014
  • 资助金额:
    $ 122.56万
  • 项目类别:
    Research Grant
Multi-wavelength tunable lasers for gas spectroscopy
用于气体光谱的多波长可调谐激光器
  • 批准号:
    EP/I002278/1
  • 财政年份:
    2010
  • 资助金额:
    $ 122.56万
  • 项目类别:
    Research Grant
Speckle velocimetry for high accuracy and multi-dimensional odometry
用于高精度和多维里程计的散斑测速
  • 批准号:
    EP/H019839/1
  • 财政年份:
    2010
  • 资助金额:
    $ 122.56万
  • 项目类别:
    Research Grant
Engineering Photonics: Development and Application of Instrumentation and Sensors
工程光子学:仪器仪表和传感器的开发与应用
  • 批准号:
    EP/H02252X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 122.56万
  • 项目类别:
    Research Grant
Filtered Rayleigh scattering for multi-parameter fluid flow analysis
用于多参数流体流动分析的滤波瑞利散射
  • 批准号:
    EP/G033900/1
  • 财政年份:
    2009
  • 资助金额:
    $ 122.56万
  • 项目类别:
    Research Grant

相似国自然基金

语义描述-视觉表征-时空轨迹知识融合的监控视频车辆重识别方法研究
  • 批准号:
    42301496
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向智能化网络运行监控的高维时间序列异常检测方法研究
  • 批准号:
    62371057
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
微量元素钒调控能量代谢用于监控结直肠癌治疗及转移抑制的机制研究
  • 批准号:
    62305121
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据和知识融合驱动的热轧过程数据空间构建与质量监控方法研究
  • 批准号:
    62373040
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
环境监管数字化转型与企业环保应对研究:来自设立污染源在线监控系统的视角
  • 批准号:
    72302111
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Intelligent instrumentation for assessment and monitoring of hydrogen blend fuels in domestic boilers
用于评估和监测家用锅炉氢混合燃料的智能仪表
  • 批准号:
    EP/X020789/1
  • 财政年份:
    2023
  • 资助金额:
    $ 122.56万
  • 项目类别:
    Research Grant
Minimally-invasive technology for personalized nutritional monitoring
用于个性化营养监测的微创技术
  • 批准号:
    10693521
  • 财政年份:
    2023
  • 资助金额:
    $ 122.56万
  • 项目类别:
CRISPR-Cas13-based rapid HIV-1 test
基于 CRISPR-Cas13 的快速 HIV-1 检测
  • 批准号:
    10593813
  • 财政年份:
    2023
  • 资助金额:
    $ 122.56万
  • 项目类别:
Reagentless Sensor Technologies For Continuous Monitoring of Heart Failure Biomarkers
用于连续监测心力衰竭生物标志物的无试剂传感器技术
  • 批准号:
    10636089
  • 财政年份:
    2023
  • 资助金额:
    $ 122.56万
  • 项目类别:
Development of a novel platform for label-free monitoring of CAR-T cell interactions in vivo
开发用于体内 CAR-T 细胞相互作用的无标记监测的新型平台
  • 批准号:
    10594112
  • 财政年份:
    2023
  • 资助金额:
    $ 122.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了