Quantum Sensing of the Geomagnetic Space Weather Environment

地磁空间天气环境的量子传感

基本信息

  • 批准号:
    EP/X036405/1
  • 负责人:
  • 金额:
    $ 17.99万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

On 13 March 1989, the largest magnetic storm of the last century caused widespread effects on power systems around the world including a blackout of the Hydro-Québec system in Canada. In the space of 93 seconds, its power grid collapsed leaving residents without electricity for 9 hours. In the UK, two large power transformers were severely damaged and required expensive repairs. In the intervening 30 years, society has become much more reliant on continuous power supply, global navigation satellite systems (GNSS), broadband internet, mobile phone communication and other services which can be badly affected by so-called space weather, specifically the effects generated by rapid variations of the magnetic field on the order of seconds to minutes. It is anticipated that a more severe event than the March 1989 storm in the contemporary UK could cause economic damage on the order of billions of pounds per day. Measuring changes of the geomagnetic during a storm is of critical national importance and can help understand the hazards posed from space weather. While present day scientific-level instruments that measure the magnetic field (called fluxgate magnetometers) at UK geomagnetic observatories are very sensitive, they are not quite sufficient for the task of making absolute rapid, high-accuracy and noise-free measurements of the magnetic field. We wish to build and deploy a new type of sensor known as an optically pumped magnetometer. This uses cutting-edge quantum technology, developed in the last decade, to measure the vibrations of Caesium (Cs) atoms inside a glass cell which are able to detect small changes of the Earth's magnetic field. As a bonus, the new magnetometers reduce the size, weight and power requirements of a sensor while increasing its accuracy over 100-fold compared to current instrumentation. To test the new optically pumped magnetometer we will run it in parallel with the scientific instruments at the Eskdalemuir geomagnetic observatory in the Scottish borders for six months. This location has had a world-leading observatory in operation since 1904 and is one of the magnetically cleanest sites in the UK. Once the performance has been assessed a further five OPM sensors will be built, integrated into a bespoke communications and power supply and deployed to remote sites across the UK to augment the BGS space weather monitoring network. In conjunction with the existing geomagnetic instruments, we will achieve a world first with the densest national network of magnetometers. This will surpass the World Meteorological Organisation (WMO) recommendation of no more than 200 km between magnetic stations.The project will bring together the technical skills of the University of Strathclyde's Physics Department to build the sensor, along with RAL Space's electronic system experience to optimise its performance. The British Geological Survey Geomagnetism team have ample experience in deploying and running long term installations and validating the accuracy of magnetic instruments. This is a cross-disciplinary project with the potential to bring technical, scientific, social and economic benefit in the form of a new high accuracy magnetometer than the can be deployed across the UK (and the world) in order to study the effects of hazardous space weather.
1989年3月13日,上个世纪最大的磁场对世界各地的电力系统造成了宽度影响,包括加拿大水力发电系统的停电。在93秒的空间中,它的电网倒塌了,使居民无电9小时。在英国,两个大电源变压器受到严重损坏,需要昂贵的维修。在随之而来的30年中,社会变得越来越关注连续电源,全球导航卫星系统(GNSS),宽带互联网,手机通信和其他服务可能受到所谓的太空天气的严重影响,尤其是磁场对第二秒钟到几分钟的快速变化产生的影响。可以预计,比1989年3月在当代英国的风暴中发生的更严重的事件可能会对每天数十亿英镑造成经济损失。测量风暴期间地磁变化至关重要,这至关重要,可以帮助了解太空天气中的危险构成。尽管当今测量英国地磁观察者的磁场(称为磁场磁力计)的科学水平仪器非常敏感,但它们不足以使磁场的绝对快速,高清和无噪声测量的任务。我们希望构建和部署一种称为光学泵送磁力计的新型传感器。这使用了在过去十年中开发的尖端量子技术,以测量能够检测到地球磁场的小变化的玻璃电池内的剖腹原子(CS)原子的振动。作为奖励,与当前仪器相比,新的磁力计降低了传感器的尺寸,重量和功率要求,同时将其准确性超过100倍。为了测试新的光泵磁力计,我们将与苏格兰边界的Eskdalemuir地磁观察中的科学仪器并行运行六个月。自1904年以来,该地点一直在运营世界领先的观察结果,并且是英国最干净的地点之一。一旦评估了性能,将再构建五个OPM传感器,集成到定制的通信和电源中,并部署到英国各地的远程站点,以增强BGS太空天气监测网络。结合现有的地磁仪器,我们将首先使用最密集的国家磁力计网络实现世界。这将超过世界气象组织(WMO)在磁场之间不超过200公里的建议。该项目将汇集Strathclyde大学物理系的技术技能,以构建传感器,以及RAL Space的电子系统体验以优化其性能。英国地质调查局地质磁磁性团队在部署和运行长期安装和验证磁性仪器的准确性方面拥有丰富的经验。这是一个跨学科的项目,具有新的高精度磁力计的形式带来技术,科学,社会和经济利益的潜力,而不是在英国(和世界)中部署,以研究危险的太空天气的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ciaran Beggan其他文献

Ciaran Beggan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ciaran Beggan', 18)}}的其他基金

Modelling the impact of geomagnetically induced currents on UK railways
模拟地磁感应电流对英国铁路的影响
  • 批准号:
    NE/Y001176/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Research Grant
Vector light enhanced atomic magnetometry
矢量光增强原子磁力测量
  • 批准号:
    EP/Z000521/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Research Grant
Measuring the effects of Space Weather in the UK using a network of school magnetometers
使用学校磁力计网络测量英国空间天气的影响
  • 批准号:
    ST/M006565/1
  • 财政年份:
    2015
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Research Grant

相似国自然基金

灾害性空间天气下地磁感应电流与电力系统响应研究
  • 批准号:
    41904169
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
中低纬度地区地磁感应电流预测模型及风险评估研究
  • 批准号:
    41774155
  • 批准年份:
    2017
  • 资助金额:
    71.0 万元
  • 项目类别:
    面上项目
蜜蜂光依赖地磁感应的分子基础研究
  • 批准号:
    31660696
  • 批准年份:
    2016
  • 资助金额:
    39.0 万元
  • 项目类别:
    地区科学基金项目
我国中低纬地磁感应电流及其空间驱动源的研究
  • 批准号:
    41664008
  • 批准年份:
    2016
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
中低纬地磁扰动感应地电场与电网GIC分布特征研究
  • 批准号:
    51677068
  • 批准年份:
    2016
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum Sensing of the Geomagnetic Space Weather Environment
地磁空间天气环境的量子传感
  • 批准号:
    EP/X036545/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Research Grant
Quantum Sensing of the Geomagnetic Space Weather Environment
地磁空间天气环境的量子传感
  • 批准号:
    EP/X036391/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Research Grant
4D sensing of polar atmosphere: space/atmosphere coupling through meso-scale auroral phenomena
极地大气的 4D 传感:通过中尺度极光现象进行空间/大气耦合
  • 批准号:
    22H00173
  • 财政年份:
    2022
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Radio Sensing Techniques with Artificial Intelligence for Diagnosing Insulation Deterioration of Ground Coils of Superconducting Maglev Systems
用于诊断超导磁悬浮系统接地线圈绝缘劣化的人工智能无线电传感技术
  • 批准号:
    20K04418
  • 财政年份:
    2020
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On-Board Radio Sensing Techniques for Diagnosing Insulation Deterioration of Ground Coils of Superconducting Maglev Systems
用于诊断超导磁悬浮系统接地线圈绝缘劣化的车载无线电传感技术
  • 批准号:
    17K06302
  • 财政年份:
    2017
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了