Photonics Enabled Terahertz Spectroscopy for Air Pollution Monitoring and Climate Change Studies
光子学支持太赫兹光谱用于空气污染监测和气候变化研究
基本信息
- 批准号:EP/W022249/1
- 负责人:
- 金额:$ 117.18万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Increasing emission levels of air pollution and greenhouse gases (GHGs) in large urban areas have become a great global concern due to their detrimental impact on human health, climate and the entire ecosystem. In order to cut emission levels, mitigation strategies are in place, however, to evaluate the effectiveness of these mitigation measures, the first step will be to improve the air quality (AQ) monitoring networks by deploying high density and high precision sensor networks to accurately capture spatial variability and emission hotspots in real-time. The traditional and more accurate air quality monitoring instrumentation are large, complex and costly, and hence are only sparsely deployed which provide accurate data but only in few locations, not providing enough information to protect the health of the population or to accurately evaluate the mitigation strategies. The emergence of low-cost sensors (LCS) within the last decade enabled observations at high spatial resolution in real-time, however, due to their poor selectivity, their measurement data is highly dependent on atmospheric composition, and also on meteorological conditions that the data generated by these platforms are of poor quality. In this fellowship, I will develop the first low-cost and high precision air pollution monitor based on photonic integrated circuits (PICs) for the next generation air quality monitoring networks. Photonic integration allows hundreds of photonic components to be fabricated on a single chip, and this step-change in technology will deliver a low-cost, on-chip, versatile instrumentation, stabilised to metrological precision that can be deployed in high density networks to accurately monitor a wide range of pollutants within industrial cities with high spatial and temporal resolution. The captured data can be transferred to the cloud servers over the existing mobile networks from which the users can easily monitor air quality with high accuracy at any time and from anywhere. The proposed instrumentation can also be deployed in balloon and satellite missions for in-situ probing of the constituents of the upper atmosphere, aiding the study of complex atmospheric processes to understand its influence on climate change. EPSRC Open Fellowship will enable me to consolidate my expertise gained over the years in industry and academia and gain my research independence. During these five years, I will have established myself to lead a team of 3 -5 researchers and will have enhanced my research output in novel photonic integrated solutions to combat the challenges faced today. This will aid me to be more competitive in applying for traditional Grants to extend my research portfolio and my research team, and become a leader in this field of research. In 10 years, my vision will be to exploit photonic integration technology for wider applications, including medical imaging, material science and non-destructive testing, and provide outstanding training opportunities to research students and early career researchers who will grow to be future academic and industrial leaders in science and engineering in the UK.
大城市地区不断增加的空气污染和温室气体(GHG)排放水平已成为全球关注的焦点,因为它们对人类健康、气候和整个生态系统产生有害影响。为了降低排放水平,缓解策略已经到位,但是,为了评估这些缓解措施的有效性,第一步将是改善空气质量(AQ)监测网络,通过部署高密度和高精度传感器网络来准确地监测空气质量(AQ)。实时捕捉空间变化和排放热点。传统且更准确的空气质量监测仪器体积庞大、复杂且成本高昂,因此部署稀疏,只能在少数地点提供准确数据,无法提供足够的信息来保护人口健康或准确评估缓解策略。过去十年中低成本传感器(LCS)的出现使得能够进行高空间分辨率的实时观测,然而,由于其选择性差,其测量数据高度依赖于大气成分以及气象条件。这些平台生成的数据质量较差。在本次奖学金中,我将开发第一个基于光子集成电路(PIC)的低成本、高精度空气污染监测仪,用于下一代空气质量监测网络。光子集成允许在单个芯片上制造数百个光子组件,这一技术的重大变革将提供低成本、片上、多功能仪器,稳定计量精度,可以部署在高密度网络中,以准确地测量数据。以高空间和时间分辨率监测工业城市内的各种污染物。捕获的数据可以通过现有的移动网络传输到云服务器,用户可以随时随地轻松、高精度地监测空气质量。拟议的仪器还可以部署在气球和卫星任务中,对高层大气的成分进行现场探测,有助于研究复杂的大气过程,以了解其对气候变化的影响。 EPSRC 开放奖学金将使我能够巩固多年来在工业界和学术界获得的专业知识,并获得我的研究独立性。在这五年中,我将领导一个由 3 -5 名研究人员组成的团队,并将提高我在新型光子集成解决方案方面的研究成果,以应对当今面临的挑战。这将帮助我在申请传统补助金时更具竞争力,以扩展我的研究组合和我的研究团队,并成为该研究领域的领导者。十年后,我的愿景是开发光子集成技术更广泛的应用,包括医学成像、材料科学和无损检测,并为研究生和早期职业研究人员提供出色的培训机会,他们将成长为未来的学术和工业人才英国科学和工程领域的领导者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lalitha Ponnampalam其他文献
Lalitha Ponnampalam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: Beamforming, User Association and Precise Positioning in Future Terahertz-Enabled Wireless Networks
合作研究:未来太赫兹无线网络中的波束成形、用户关联和精确定位
- 批准号:
2234122 - 财政年份:2023
- 资助金额:
$ 117.18万 - 项目类别:
Standard Grant
Collaborative Research: Beamforming, User Association and Precise Positioning in Future Terahertz-Enabled Wireless Networks
合作研究:未来太赫兹无线网络中的波束成形、用户关联和精确定位
- 批准号:
2234123 - 财政年份:2023
- 资助金额:
$ 117.18万 - 项目类别:
Standard Grant
Ultrafast Terahertz Polarimetry Enabled by Semiconductor Nanowire Sensors
半导体纳米线传感器实现超快太赫兹偏振测量
- 批准号:
EP/W017067/1 - 财政年份:2022
- 资助金额:
$ 117.18万 - 项目类别:
Research Grant
Ultrafast Terahertz Polarimetry Enabled by Semiconductor Nanowire Sensors
半导体纳米线传感器实现超快太赫兹偏振测量
- 批准号:
EP/W018489/1 - 财政年份:2022
- 资助金额:
$ 117.18万 - 项目类别:
Research Grant
Frequency-Comb-Enabled Intelligent Sensing in Millimeter-Wave and Terahertz
毫米波和太赫兹频率梳智能传感
- 批准号:
2214631 - 财政年份:2022
- 资助金额:
$ 117.18万 - 项目类别:
Standard Grant