Imaging the brain with ultrasound full-waveform inversion

通过超声全波形反转对大脑进行成像

基本信息

  • 批准号:
    EP/X033651/1
  • 负责人:
  • 金额:
    $ 471.35万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Rapid brain imaging is central to the diagnosis and treatment of acute neurological conditions - for example stroke or head trauma. Existing imaging methods require large, immobile, high-power instruments that are near-impossible to deploy outside specialized environments, leading to unnecessarily delayed diagnosis and treatment, and consequent increased disability and higher fatality rates. This project will create a device that can be simply and rapidly applied to any patient, any time, any place, exploiting advances that have already revolutionised imaging in geophysics. We will image the brain using ultrasound waves, transmitted across the head, applying advanced computer modelling to remove the distorting effects of the skull, thereby enabling high-resolution high-contrast imaging of the brain unachievable by conventional ultrasound.The petroleum industry has spent large sums developing advanced geophysical algorithms to image oil and gas deposits in three dimensions. Foremost among these is "full-waveform inversion" (FWI), a computationally intensive technique in which accurate modelling of soundwave propagation through a three-dimensional object is used to recover the detailed internal properties of that object. This project will adapt and transfer that technology across disciplines so that it can be applied directly for medical imaging of the brain, leading to cheaper, faster, more-accurate clinical diagnosis and treatment.The main existing technologies used in three-dimensional medical imaging are magnetic resonance imaging (MRI), x-ray computed tomography (CT), and pulse-echo ultrasound. MRI is high resolution and high accuracy but is time consuming, expensive and immobile; it cannot be applied safely without a preliminary detailed investigation to ensure the absence of ferromagnetic bodies within any new patient. X-ray CT is cheaper and faster, but it is typically lower resolution than MRI, with poor soft-tissue contrast, and it uses harmful ionising radiation. Conventional pulse-echo ultrasound is cheap, fast, portable and universally safe, but it uses high frequencies that have limited penetration, and that are especially attenuated and distorted by the bones of the skull. Consequently, existing ultrasound technology is unable to image the adult brain successfully within an intact human skull.Ultrasound at frequencies below those normally used for imaging does however have the penetration required to travel right across the head. Full-waveform inversion is able to produce accurate high-resolution images using lower-frequency data than is possible using conventional techniques; FWI is also able to compensate accurately for all the distortions generated by the skull. Consequently, the combination of low-frequency transmitted ultrasound with full-waveform inversion is able to produce well-resolved accurate images of the entire human brain. The potential of this approach has already been demonstrated in computer and laboratory simulations; this project now seeks to replicate that success in the laboratory on a live human subject.Safe, fast, quantitative, universally applicable, deployable continuously, and above all portable by paramedics, our device and our approach aim to revolutionise brain imaging, in health and disease. The technology has particular relevance to stroke - globally the second-commonest cause of premature death and a major, growing cause of adult disability - and to brain imaging in resource-limited and inaccessible environments.
快速脑成像对于急性神经系统疾病的诊断和治疗至关重要 - 例如中风或头部创伤。现有的成像方法需要大型,不动的高功率工具,这些仪器几乎无法在专业环境外部署,从而导致不必要的诊断和治疗,从而增加残疾和更高的死亡率。该项目将创建一种可以简单,快速地应用于任何时间,任何地方,利用已经彻底改变地球物理成像的进步的设备。 We will image the brain using ultrasound waves, transmitted across the head, applying advanced computer modelling to remove the distorting effects of the skull, thereby enabling high-resolution high-contrast imaging of the brain unachievable by conventional ultrasound.The petroleum industry has spent large sums developing advanced geophysical algorithms to image oil and gas deposits in three dimensions.其中最重要的是“全波倒置”(FWI),这是一种计算密集型技术,其中使用三维对象对声波传播的准确建模用于恢复该对象的详细内部属性。该项目将适应和转移该技术跨学科,以便将其直接用于大脑的医学成像,从而导致更便宜,更快,更准确的临床诊断和治疗。三维医学成像中使用的主要技术是磁共振成像(MRI),X射线计算机tomography(CT)和Pulse-echo Ulterasound。 MRI是高分辨率和高精度的高度,但耗时,昂贵和不动。如果没有初步的详细研究,就无法安全地应用它,以确保任何新患者都没有铁磁体。 X射线CT便宜且更快,但分辨率通常低于MRI,软组织对比度差,并且使用有害的电离辐射。常规的脉搏回声超声是便宜,快速,便携式和普遍安全的,但是它使用的高频渗透有限,并且特别受到头骨骨骼的衰减和扭曲。因此,现有的超声技术无法在完整的人类头骨内成功地对成年大脑进行成像。但是,低于通常用于成像的频率确实具有直接穿过头部的渗透性。全波倒置能够使用低频数据产生准确的高分辨率图像,而不是使用常规技术。 FWI还能够准确补偿头骨产生的所有扭曲。因此,低频传输超声与全波倒置的组合能够产生整个人脑的精确精确图像。在计算机和实验室模拟中已经证明了这种方法的潜力。现在,该项目试图在实验室中复制实验室的成功。该技术与中风特别相关 - 在全球范围内是最早死亡的第二个原因,是成人残疾的主要原因 - 以及在资源有限和无法访问的环境中进行大脑成像。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Ultrasound Array of Emitter-Receiver Stacks for Microbubble-Based Therapy
  • DOI:
    10.1109/tbme.2023.3307462
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Jiang,Zheng;Cudeiro-Blanco,Javier;Choi,James J.
  • 通讯作者:
    Choi,James J.
Corrigendum to Stride: A flexible software platform for high-performance ultrasound computed tomography Computer Methods and Programs in Biomedicine 221 (2022) 106855.
Corrigendum to Stride:生物医学中高性能超声计算机断层扫描计算机方法和程序的灵活软件平台 221 (2022) 106855。
Dual-Probe Transcranial Full-Waveform Inversion: A Brain Phantom Feasibility Study
双探头经颅全波形反转:脑模体可行性研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Warner其他文献

Bleeding Small Intestine Pyogenic Granuloma on 18F-FDG PET/CT.
18F-FDG PET/CT 上显示小肠出血化脓性肉芽肿。
  • DOI:
    10.1097/rlu.0000000000000929
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    A. Iravani;A. Law;M. Millward;Michael Warner;S. Sparrow
  • 通讯作者:
    S. Sparrow
The Genetic Makings of the Superorganism
超有机体的遗传构成
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Warner
  • 通讯作者:
    Michael Warner
Enforcing Work Conservation in Modular Aeroelastic Coupling For Multidisciplinary Design Optimization
加强模块化气动弹性联轴器的工作守恒以实现多学科设计优化
  • DOI:
    10.2514/6.2024-2411
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sebastiaan P. van Schie;Michael Warner;Andrew Fletcher;John T. Hwang
  • 通讯作者:
    John T. Hwang
Demand management: A methodology for outcomes-driven staffing and patient flow management
  • DOI:
    10.1016/j.mnl.2007.01.002
  • 发表时间:
    2007-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Beth Pickard;Michael Warner
  • 通讯作者:
    Michael Warner
Large-scale multidisciplinary design optimization of a NASA air taxi concept using a comprehensive physics-based system model
使用基于物理的综合系统模型对 NASA 空中出租车概念进行大规模多学科设计优化
  • DOI:
    10.2514/6.2024-0771
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marius L. Ruh;Andrew Fletcher;Darshan Sarojini;Mark Sperry;Jiayao Yan;Luca Scotzniovsky;Sebastiaan P. van Schie;Michael Warner;Nicholas C. Orndorff;Ru Xiang;A. J. Joshy;Han Zhao;Joshua Krokowski;Hyunjune Gill;Seongkyu Lee;Zeyu Cheng;Zhi Cao;Chris Mi;Christopher Silva;Lauren Wolfe;Jiun;John T. Hwang
  • 通讯作者:
    John T. Hwang

Michael Warner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Warner', 18)}}的其他基金

Imaging the brain with ultrasound full-waveform inversion
通过超声全波形反转对大脑进行成像
  • 批准号:
    EP/W004526/1
  • 财政年份:
    2021
  • 资助金额:
    $ 471.35万
  • 项目类别:
    Research Grant
Wave-equation helioseismology
波动方程日震学
  • 批准号:
    PP/E001513/1
  • 财政年份:
    2007
  • 资助金额:
    $ 471.35万
  • 项目类别:
    Research Grant
Collaborative Project: C-SPIRIT: Coastline - Seamless Articulation Program for Informatics Recruitment and Intersegmental Transfer
合作项目:C-SPIRIT:海岸线 - 信息学招聘和部门间转移的无缝衔接计划
  • 批准号:
    0501932
  • 财政年份:
    2005
  • 资助金额:
    $ 471.35万
  • 项目类别:
    Standard Grant

相似国自然基金

靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
  • 批准号:
    82302422
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
  • 批准号:
    32330014
  • 批准年份:
    2023
  • 资助金额:
    215 万元
  • 项目类别:
    重点项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
  • 批准号:
    82371712
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于脑-脊髓-视神经MRI影像特征的神经免疫疾病影像亚型及其分子生物学机制的多组学研究
  • 批准号:
    82330057
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
  • 批准号:
    82302160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Super-Resolution 3D Ultrasound Imaging of Brain Activity
职业:大脑活动的超分辨率 3D 超声成像
  • 批准号:
    2237309
  • 财政年份:
    2023
  • 资助金额:
    $ 471.35万
  • 项目类别:
    Continuing Grant
Sonodynamic therapy using MRI-guided focused ultrasound in combination with 5-aminolevulinic acid to treat recurrent glioblastoma multiforme
使用 MRI 引导聚焦超声联合 5-氨基乙酰丙酸的声动力疗法治疗复发性多形性胶质母细胞瘤
  • 批准号:
    10699858
  • 财政年份:
    2023
  • 资助金额:
    $ 471.35万
  • 项目类别:
Towards treatment for the complex patient: investigations of low-intensity focused ultrasound.
针对复杂患者的治疗:低强度聚焦超声的研究。
  • 批准号:
    10775216
  • 财政年份:
    2023
  • 资助金额:
    $ 471.35万
  • 项目类别:
Mechanisms and Functions of Cortical Activity to Restore Behavior
皮层活动恢复行为的机制和功能
  • 批准号:
    10737217
  • 财政年份:
    2023
  • 资助金额:
    $ 471.35万
  • 项目类别:
Ultrasonic-tagged remote interferometric flowmetry for brain activity
用于大脑活动的超声波标记远程干涉流量测量
  • 批准号:
    10731255
  • 财政年份:
    2023
  • 资助金额:
    $ 471.35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了