Machine Learning for Computational Water Treatment

用于计算水处理的机器学习

基本信息

  • 批准号:
    EP/X033244/1
  • 负责人:
  • 金额:
    $ 49.91万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Endocrine-disrupting chemicals (EDCs) affect the hormone systems of animals, mimicking the effects of naturally occurring hormones (such as oestrogen or testosterone) in animals and blocking their action. The effects of these chemicals are wide-ranging and include reproductive failure and developmental problems. Unfortunately, a huge variety of compounds have the potential to disrupt the endocrine system, including pharmaceuticals (e.g. antibiotics), personal care products (e.g. deodorants) and raw materials for manufacturing (e.g. bisphenols). While the full effect of these compounds on human health is not yet known, their removal from drinking water is an emerging problem in water treatment, and one that only becomes more important as more EDCs are discovered. The best way to remove a given EDC from drinking water is not always obvious, and the standard practice is to screen different possible methods to find the optimum. This can be very costly in terms of both money and time, and the method that is best for one source of drinking water may not always be best in another source whose composition is different.This project harnesses the power of computational chemistry and machine-learning (ML) to speed up the search for materials for EDC removal, beginning with atomistic simulations to study water decontamination in silico, in tandem with the results of laboratory experiments. The culmination of this work will be the development of an efficient and robust ML framework that can predict the ability of a material to remove an endocrine disruptor from drinking water, saving a significant amount of experimental time by suggesting candidate materials to focus on, and allowing the water management industry to act quickly to deal with newly discovered EDCs.
内分泌干​​扰化学物质 (EDC) 会影响动物的激素系统,模仿动物体内自然产生的激素(如雌激素或睾酮)的作用并阻碍其作用。这些化学物质的影响范围广泛,包括生殖障碍和发育问题。不幸的是,多种化合物都有可能破坏内分泌系统,包括药品(例如抗生素)、个人护理产品(例如除臭剂)和制造原材料(例如双酚)。虽然这些化合物对人类健康的全面影响尚不清楚,但从饮用水中去除它们是水处理中一个新出现的问题,而且随着更多 EDC 的发现,这个问题只会变得更加重要。从饮用水中去除特定 EDC 的最佳方法并不总是显而易见的,标准做法是筛选不同的可能方法以找到最佳方法。这在金钱和时间方面都非常昂贵,而且最适合一种饮用水源的方法可能并不总是适合另一种成分不同的水源。该项目利用了计算化学和机器学习的力量(ML) 加快寻找可去除 EDC 的材料,从原子模拟开始,结合实验室实验的结果,在计算机中研究水净化。这项工作的高潮将是开发一个高效、强大的机器学习框架,该框架可以预测材料从饮用水中去除内分泌干扰物的能力,通过建议重点关注的候选材料来节省大量实验时间,并允许水管理行业迅速采取行动处理新发现的 EDC。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Wilkins其他文献

The patchy landscape of supervision for child protection professionals in Albania
阿尔巴尼亚儿童保护专业人员的监管状况参差不齐
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Izela Tahsini;David Wilkins
  • 通讯作者:
    David Wilkins
Microbiota fingerprints lose individually identifying features over time
随着时间的推移,微生物群指纹会失去单独的识别特征
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    15.5
  • 作者:
    David Wilkins;M. Leung;Patrick K. H. Lee
  • 通讯作者:
    Patrick K. H. Lee
Transformative Justice, Reparations and Transatlantic Slavery
变革性正义、赔偿和跨大西洋奴隶制
  • DOI:
    10.1177/0964663917746490
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    M. Evans;David Wilkins
  • 通讯作者:
    David Wilkins
Seven Principles of Effective Supervision for Child and Family Social Work
儿童与家庭社会工作有效监督七项原则
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Wilkins
  • 通讯作者:
    David Wilkins
Understanding Historical Slavery, Its Legacies, and Its Lessons for Combating Modern-Day Slavery and Human Trafficking
了解历史奴隶制、其遗产以及打击现代奴隶制和人口贩运的教训

David Wilkins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于机器学习和相图计算耦合方法的γ′相强化型高熵高温合金的加速设计及其性能研究
  • 批准号:
    52371007
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
融合增强型生成对抗网络和医学影像的CSM智能辅助诊断关键技术研究
  • 批准号:
    61872351
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于内存的大规模空间数据管理和机器学习系统
  • 批准号:
    61802364
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
细菌VI型分泌系统稳定肠道菌群结构的计算模型和方法研究
  • 批准号:
    31771468
  • 批准年份:
    2017
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
基于特征挖掘和机器学习的细菌VI型分泌系统效应分子的功能分类、计算预测和实验验证
  • 批准号:
    31571352
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
  • 批准号:
    2337678
  • 财政年份:
    2024
  • 资助金额:
    $ 49.91万
  • 项目类别:
    Continuing Grant
Computational Modeling Core
计算建模核心
  • 批准号:
    10551707
  • 财政年份:
    2023
  • 资助金额:
    $ 49.91万
  • 项目类别:
Accelerating drug discovery via ML-guided iterative design and optimization
通过机器学习引导的迭代设计和优化加速药物发现
  • 批准号:
    10552325
  • 财政年份:
    2023
  • 资助金额:
    $ 49.91万
  • 项目类别:
Developing computational methods to identify of endogenous substrates of E3 ubiquitin ligases and molecular glue degraders
开发计算方法来鉴定 E3 泛素连接酶和分子胶降解剂的内源底物
  • 批准号:
    10678199
  • 财政年份:
    2023
  • 资助金额:
    $ 49.91万
  • 项目类别:
Pharmacokinetics-Based DNA-Encoded Library Screening
基于药代动力学的 DNA 编码文库筛选
  • 批准号:
    10644211
  • 财政年份:
    2023
  • 资助金额:
    $ 49.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了