Controlling light with non-Hermitian Schrödinger dynamics
用非厄米薛定谔动力学控制光
基本信息
- 批准号:EP/X032256/1
- 负责人:
- 金额:$ 10.19万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Much of modern technology, ranging from medical applications over data transmission to novel technologies for quantum computing, rely on the control of light in optical waveguides. Thus, any improvement in the control mechanisms has a large ripple on effect. Intuitively, to maximise efficiency of any optical device, one would seek to minimise absorption and losses, and for decades (if not centuries) this has been a guiding principle in the design of control schemes. Only fairly recently has the idea of using engineered losses to actively control dynamics been explored, and has led to a spectacular amount of new applications. The mathematics underpinning these ideas is borrowed from fundamental quantum physics from a field known as non-Hermitian and PT-symmetric quantum theory. While the implementation of quantum dynamics generated by non-Hermitian Hamiltonians in waveguides has been a major success story over the last decade, many important aspects remain unexplored. In particular the application of explicitly time-dependent schemes that are of great importance in the absence of losses, has been little investigated, due to its nontrivial underlying mathematics. To propel the applications to the next level, it is imperative that the mathematical foundations of time-dependent non-Hermitian quantum systems are understood and made accessible to practitioners in physical applications. The main goal of this grant is to categorise and then exploit the rich mathematical nature of systems described by non-Hermitian Hamiltonians with explicitly time-dependent parameters. This is a challenging task, since the quantum adiabatic theorem, that provides the foundations of most Hermitian systems, breaks down in the non-Hermitian case. Recently we were able to make substantial progress for specific model systems, using the language of dynamical systems and tools from geometry and group theory. We will build on this to realise the vision of providing the mathematical foundations for next generation non-Hermitian waveguide applications.
从数据传输的医疗应用到量子计算的新技术,许多现代技术都依赖于光波导中的光控制。因此,控制机制的任何改进都会产生很大的连锁反应。直观地说,为了最大限度地提高任何光学设备的效率,人们都会寻求最大限度地减少吸收和损耗,几十年来(如果不是几个世纪),这一直是控制方案设计的指导原则。直到最近,人们才探索利用工程损失来主动控制动力学的想法,并带来了大量的新应用。支持这些想法的数学借鉴自非厄米和 PT 对称量子理论领域的基础量子物理学。虽然波导中非厄米哈密顿量产生的量子动力学的实现在过去十年中取得了重大成功,但许多重要方面仍有待探索。特别是在没有损失的情况下非常重要的显式时间相关方案的应用,由于其基础数学并不平凡,因此很少被研究。为了将应用推向新的水平,必须理解时间相关的非厄米量子系统的数学基础,并让物理应用的从业者能够理解它们。该资助的主要目标是对具有明确时间相关参数的非厄米哈密顿量描述的系统进行分类,然后利用其丰富的数学性质。这是一项具有挑战性的任务,因为为大多数厄米系统提供基础的量子绝热定理在非厄米情况下会失效。最近,我们利用动力系统语言以及几何和群论工具,在特定模型系统方面取得了实质性进展。我们将在此基础上实现为下一代非厄米波导应用提供数学基础的愿景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eva-Maria Graefe其他文献
Eva-Maria Graefe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
二维非晶氧化物(MoO3-x、WO3-x、Nb2O5-x、Ta2O5-x)纳米材料的可控制备及其等离激元共振与光致电荷转移共振协同增强拉曼散射的研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
光伏功率快速波动与非完美通讯下配电网实时电压协同控制方法研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于双接地和升压单元功率最小的非隔离光伏逆变器高可靠拓扑理论和协同控制研究
- 批准号:
- 批准年份:2020
- 资助金额:59 万元
- 项目类别:面上项目
线结构光传感器参数自适应控制及多轴主动测量研究
- 批准号:51705130
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
深穿透多尺度光遗传学精准操控方法研究
- 批准号:61735016
- 批准年份:2017
- 资助金额:280.0 万元
- 项目类别:重点项目
相似海外基金
High energy-density positive materials using novel electrode reactions by controlling oxygen anions
通过控制氧阴离子使用新型电极反应的高能量密度正极材料
- 批准号:
20H02846 - 财政年份:2020
- 资助金额:
$ 10.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Controlling molecular orientation of Stilbene-derivatives by utilizing one-dimensional nano space: Toward constructing novel wavelength-conversion devices
利用一维纳米空间控制二苯乙烯衍生物的分子取向:构建新型波长转换器件
- 批准号:
18K04864 - 财政年份:2018
- 资助金额:
$ 10.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimization of properties of metal oxynitrides by controlling their stoichiometry
通过控制金属氮氧化物的化学计量优化其性能
- 批准号:
18H02059 - 财政年份:2018
- 资助金额:
$ 10.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Enhanced molecular emission characteristics by controlling electronic structure relating to the high order singlet excited state
通过控制与高阶单重激发态相关的电子结构来增强分子发射特性
- 批准号:
18H02046 - 财政年份:2018
- 资助金额:
$ 10.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
High power THz-wave generation based on stimulated polariton scattering with controlling temporal pulses
基于受激极化子散射并控制时间脉冲的高功率太赫兹波产生
- 批准号:
17H01282 - 财政年份:2017
- 资助金额:
$ 10.19万 - 项目类别:
Grant-in-Aid for Scientific Research (A)