CBET-EPSRC: Deep Learning Closure Models for Large-Eddy Simulation of Unsteady Aerodynamics

CBET-EPSRC:用于非定常空气动力学大涡模拟的深度学习收敛模型

基本信息

  • 批准号:
    EP/X031640/1
  • 负责人:
  • 金额:
    $ 45.17万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Computational simulations increasingly enable the design of lighter, more efficient, and higher-performance flight vehicles. Current computational capabilities have successfully aided many advances in aerospace design, but challenges remain in the selection of the models used to represent turbulence. Due to practical limits on computing resources, computational simulations for engineering design typically neglect the intricate features of turbulence. The models used to approximate the missing physics contain parameters that must be calibrated to data, which is challenging for unknown flows, and often have simple mathematical forms that limit their accuracy. Recently, efficient numerical methods to calibrate the parameters of complex models during flow simulations have been developed using techniques from machine learning and constrained optimization. These methods have been successful for simple turbulent flows but have not been applied to the complex flows encountered in aerodynamics. The principal objective of this project is to develop methods by which to calibrate turbulence models for simulations of practical aerodynamic flows, which will enhance their predictive accuracy for challenging configurations. The optimization methods to be developed will be broadly applicable across engineering fields, not limited to aerodynamics, and will be made publicly available in an open-source, high-performance software package.This project will address the need for accurate, efficient computational fluid dynamics models by developing deep learning closures and optimization methods for large-eddy simulations of turbulent separated and recirculating flows. The models will be optimized over the compressible Navier-Stokes equations using an adjoint-based approach, which will enable efficient data assimilation by avoiding the need to construct high-dimensional gradients. The resulting models will enable significant accuracy improvements compared to state-of-the-art models for comparable cost, or equivalently, significantly reduced computational cost for comparable accuracy. High-fidelity numerical datasets for several wake geometries and separated airfoil flows will be generated as target data for the optimization procedure. Additionally, a new class of online optimization methods will be developed to enable dynamic, data-free closure models that will learn directly from the governing equations, and a hybrid, multiscale deep learning formulation will be developed to model near-wall turbulent flows. The scientific community more broadly is interested in leveraging large datasets and machine learning techniques; this project therefore has potential to develop methods to be widely adopted across disciplines. The resulting algorithms, methods, datasets, and codes will be disseminated to foster adoption within the aerodynamics community and across scientific disciplines.
计算模拟越来越多地支持更轻、更高效和更高性能的飞行器的设计。当前的计算能力已经成功地促进了航空航天设计的许多进步,但在选择用于表示湍流的模型方面仍然存在挑战。由于计算资源的实际限制,工程设计的计算模拟通常忽略湍流的复杂特征。用于近似缺失物理场的模型包含必须根据数据进行校准的参数,这对于未知流来说是一个挑战,并且通常具有简单的数学形式,限制了其准确性。最近,使用机器学习和约束优化技术开发了在流动模拟期间校准复杂模型参数的有效数值方法。这些方法对于简单的湍流已取得成功,但尚未应用于空气动力学中遇到的复杂流动。该项目的主要目标是开发用于校准实际空气动力学流动模拟的湍流模型的方法,这将提高其对具有挑战性的配置的预测准确性。待开发的优化方法将广泛适用于整个工程领域,不仅限于空气动力学,并将以开源、高性能软件包的形式公开提供。该项目将满足对精确、高效的计算流体动力学的需求通过开发用于湍流分离流和再循环流的大涡流模拟的深度学习闭包和优化方法来建立模型。该模型将使用基于伴随的方法在可压缩纳维-斯托克斯方程上进行优化,这将通过避免构建高维梯度来实现有效的数据同化。与具有可比成本的最先进模型相比,所得模型将显着提高精度,或者同等地,在可比精度下显着降低计算成本。将生成多个尾流几何形状和分离翼型流的高保真数值数据集,作为优化过程的目标数据。此外,还将开发一类新型在线优化方法,以实现动态、无数据的闭合模型,该模型将直接从控制方程中学习,并且将开发混合、多尺度深度学习公式来模拟近壁湍流。科学界更广泛地对利用大型数据集和机器学习技术感兴趣;因此,该项目有潜力开发跨学科广泛采用的方法。由此产生的算法、方法、数据集和代码将被传播,以促进空气动力学界和跨科学学科的采用。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large Eddy Simulation of Airfoil Flows Using Adjoint-Trained Deep Learning Closure Models
使用伴随训练的深度学习闭合模型对翼型流进行大涡模拟
  • DOI:
    10.2514/6.2024-0296
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hickling T
  • 通讯作者:
    Hickling T
Deep learning closure models for large-eddy simulation of flows around bluff bodies
用于钝体周围流动大涡流模拟的深度学习闭合模型
  • DOI:
    10.1017/jfm.2023.446
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Sirignano, Justin;MacArt, Jonathan F.
  • 通讯作者:
    MacArt, Jonathan F.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Justin Sirignano其他文献

Adjoint Optimization of the BGK Equation with an Embedded Neural Network for Reduced-Order Modeling of Hypersonic Flows
用于高超声速流降阶建模的 BGK 方程与嵌入式神经网络的伴随优化
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicholas Daultry Ball;M. Panesi;J. MacArt;Justin Sirignano
  • 通讯作者:
    Justin Sirignano
Physics-constrained deep learning-based model for non-equilibrium flows
基于物理约束的深度学习的非平衡流模型
  • DOI:
    10.2514/6.2024-0654
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Edoardo Monti;Narendra Singh;Justin Sirignano;J. MacArt;M. Panesi;Giulio Gori
  • 通讯作者:
    Giulio Gori

Justin Sirignano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Justin Sirignano', 18)}}的其他基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Research Grant

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Research Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    2311500
  • 财政年份:
    2023
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Standard Grant
CBET-EPSRC: Deep Learning Closure Models for Large-Eddy Simulation of Unsteady Aerodynamics
CBET-EPSRC:用于非定常空气动力学大涡模拟的深度学习收敛模型
  • 批准号:
    2215472
  • 财政年份:
    2022
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Standard Grant
EPSRC DTP Studentship: Uncovering the "Instincts" of Deep Generative Models for Fair and Unbiased Visual Content Creation
EPSRC DTP 学生资助:揭示公平、公正的视觉内容创作的深层生成模型的“本能”
  • 批准号:
    2599521
  • 财政年份:
    2021
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Studentship
Deep Learning of Surveillance Video (EPSRC iCASE BAE)
监控视频深度学习(EPSRC iCASE BAE)
  • 批准号:
    1852482
  • 财政年份:
    2016
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了