Route to high-precision positioning of single ion-implanted impurities in silicon

硅中单离子注入杂质的高精度定位之路

基本信息

  • 批准号:
    EP/X018989/1
  • 负责人:
  • 金额:
    $ 23.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The only quantum technology (QT) fabrication technology that can readily leverage microelectronic fabrication processes with the existing ability of large scale-up, enabling big enough qubit arrays for error correction, or that can potentially repeatably manufacture large numbers of identical devices, is the incorporation of single impurity qubits through implantation. However, unless fully deterministic implantation of single ions (ISI) is developed, the advantages of impurity-based QT for scale-up will not be realized. Quantum computing based on ion traps, superconducting circuits and semiconductor quantum dots using a small number of qubits are well advanced, but very large-scale reproduction constitutes a major challenge for each. Small numbers of impurity qubits in silicon can also be made with high quality using hydrogen lithography, which is based on scanning probe techniques, that have enabled atomic-scale precision leading to such ground-breaking achievements as the single-atom transistor (However, it is slow and does not provide an easily scalable route to the millions of qubits needed for manufacturable quantum computers. Implantation in silicon of single impurity qubit atoms offers a solution, but most of the research in this area centres on samples with stochastic incorporation of impurities with some limited control over the placement through masks or with focussed beams. The challenge here is therefore the opposite compared with ion traps etc - large scale repetition is easy, but the positioning (and consequent error rate) of each qubit is poorer and must be improved. The placement precision is limited by the focusing of the implanted ion and the movement of the ion after it enters the target material, known as the impact straggle. Implantation also causes undesirable damage to the crystal host, as the energetic ion ricochets through channels in the crystal. This is the challenge we seek to address, using a speculative idea that will not only repair this impact damage cloud but also, and most importantly, allow much higher precision positioning of the implanted impurity. We propose a solution based on lateral solid phase epitaxial regrowth (L-SPER). Simply put, the target area is pre-amorphised (implanting silicon ions into silicon breaks bonds but does not introduce impurities and can even improve isotopic purity) by a focussed ion beam or through broad area lithography and ion implantation. Following implantation of a single ion, a low-temperature anneal restores the crystal through epitaxial regrowth, which is seeded by the surrounding crystalline material. Full pre-amorphisation is well known to result in higher crystallinity following annealing, compared to the partial amorphisation caused solely by the implantation process. The nature of this proposal is to consider what effect L-SPER has on an individual implanted atom. There is every reason to expect that, as the amorphised region shrinks during regrowth, the impurity atom is slowly pushed to the centre as the crystal reforms. If we can demonstrate this, then the precision of the final placement of the atom may be affected more strongly by the central positioning of the pre-amorphised regions rather than limited by the focusing uncertainty and straggle of the implanted ion, where the former can be of the order of a nanometer giving an order of magnitude improvement in the final positioning.
唯一可以轻松利用微电子制造工艺和现有的大规模放大能力、实现足够大的量子位阵列进行纠错,或者可以重复制造大量相同器件的量子技术(QT)制造技术是通过植入单一杂质量子位。然而,除非开发出完全确定性的单离子注入 (ISI),否则基于杂质的 QT 的放大优势将无法实现。基于离子陷阱、超导电路和使用少量量子位的半导体量子点的量子计算已经非常先进,但超大规模的复制对它们都构成了重大挑战。硅中的少量杂质量子位也可以使用基于扫描探针技术的氢光刻技术高质量地制造,该技术实现了原子级精度,从而实现了单原子晶体管等突破性成就(但是,它速度缓慢,并且无法为可制造量子计算机所需的数百万个量子位提供易于扩展的途径。在硅中植入单一杂质量子位原子提供了一种解决方案,但该领域的大多数研究都集中在具有以下性质的样品上。因此,与离子阱等相比,通过掩模或聚焦光束对放置进行一些有限的控制来随机掺入杂质 - 大规模重复很容易,但每个量子位的定位(以及随之而来的错误率)是不同的。放置精度受到注入离子的聚焦和离子进入目标材料后的运动(称为冲击散乱)的限制。植入还会对晶体主体造成不良损害,因为高能离子会通过晶体中的通道弹跳。这是我们寻求解决的挑战,使用一种推测性的想法,不仅可以修复这种冲击损伤云,而且最重要的是,可以对植入的杂质进行更高精度的定位。我们提出了一种基于横向固相外延再生长(L-SPER)的解决方案。简单地说,通过聚焦离子束或通过大面积光刻和离子注入对目标区域进行预非晶化(将硅离子注入硅中会破坏键,但不会引入杂质,甚至可以提高同位素纯度)。注入单个离子后,低温退火通过外延再生长恢复晶体,外延再生长由周围的晶体材料播种。众所周知,与仅由注入工艺引起的部分非晶化相比,完全预非晶化会在退火后产生更高的结晶度。该提案的本质是考虑 L-SPER 对单个植入原子的影响。有充分的理由预期,随着非晶化区域在再生长过程中收缩,杂质原子会随着晶体的重新形成而缓慢地被推向中心。如果我们能够证明这一点,那么原子最终放置的精度可能会更强烈地受到预非晶化区域的中心定位的影响,而不是受到注入离子的聚焦不确定性和散乱的限制,前者可以是纳米量级使最终定位得到一个数量级的改进。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detection Sensitivity Limit of Hundreds of Atoms with X-Ray Fluorescence Microscopy
X 射线荧光显微镜对数百个原子的检测灵敏度极限
  • DOI:
    10.48550/arxiv.2310.03409
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masteghin M
  • 通讯作者:
    Masteghin M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Clowes其他文献

Steven Clowes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Clowes', 18)}}的其他基金

RAISIN - QT Network for Single-ion Implantation Technologies and Science
RAISIN - 单离子植入技术和科学的 QT 网络
  • 批准号:
    EP/W027070/1
  • 财政年份:
    2022
  • 资助金额:
    $ 23.8万
  • 项目类别:
    Research Grant
NON-MAGNETIC SEMICONDUCTOR SPINTRONICS: INNOVATIONS IN NANOSCALE, HIGHLY SPIN-ORBIT COUPLED QUANTUM WELL SYSTEMS
非磁性半导体自旋电子学:纳米级、高度自旋轨道耦合量子阱系统的创新
  • 批准号:
    EP/E055583/1
  • 财政年份:
    2007
  • 资助金额:
    $ 23.8万
  • 项目类别:
    Fellowship

相似国自然基金

基因组鸟嘌呤氧化损伤的高灵敏定量与精确定位分析方法的研究与应用
  • 批准号:
    22374003
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
“惯导-雷达-视觉”多传感器融合的煤矿钻锚机器人精确定位方法研究
  • 批准号:
    52374161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
紫花苜蓿耐盐调控关键基因的精确定位及功能解析
  • 批准号:
    32371770
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
非编码驱动突变的癌种特异性和精确定位研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
光驱动液晶弹性体软体机器人驱动器的物理唯象混合建模与精确定位优化设计
  • 批准号:
    62203407
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Programming designer DNA nanostructures for blocking enveloped viral infection
编程设计 DNA 纳米结构以阻止包膜病毒感染
  • 批准号:
    10598739
  • 财政年份:
    2023
  • 资助金额:
    $ 23.8万
  • 项目类别:
A genomic toolkit for functional interrogation of trait variation in an aquatic model
用于水生模型性状变异功能询问的基因组工具包
  • 批准号:
    10334180
  • 财政年份:
    2022
  • 资助金额:
    $ 23.8万
  • 项目类别:
Albumin hitchhiking siRNAs for gene targeting in aged brain
白蛋白搭便车 siRNA 用于老年大脑基因靶向
  • 批准号:
    10611521
  • 财政年份:
    2022
  • 资助金额:
    $ 23.8万
  • 项目类别:
Albumin hitchhiking siRNAs for gene targeting in aged brain
白蛋白搭便车 siRNA 用于老年大脑基因靶向
  • 批准号:
    10467737
  • 财政年份:
    2022
  • 资助金额:
    $ 23.8万
  • 项目类别:
A genomic toolkit for functional interrogation of trait variation in an aquatic model
用于水生模型性状变异功能询问的基因组工具包
  • 批准号:
    10592243
  • 财政年份:
    2022
  • 资助金额:
    $ 23.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了