Layered Materials Research Foundry

层状材料研究铸造厂

基本信息

  • 批准号:
    EP/X015742/1
  • 负责人:
  • 金额:
    $ 238.42万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Graphene is ideal for opto-electronics due to its high carrier mobility at room temperature, electrically tuneable optical conductivity, and wavelength independent absorption. Graphene has opened a floodgate for many layered materials (LMs). For a given LM, the range of properties and applications can be tuned by varying the number of layers and their relative orientation. LM heterostructures (LMHs) with tailored properties can be created by stacking different layers. The number of bulk materials that can be exfoliated runs in the thousands, but few have been studied to date. The layered materials research foundry (LMRF) will develop a fully integrated LM-Silicon Photonics platform, serving 5G, 6G and quantum communications, facilitating new design concepts that unlock new performance levels. Graphene and the other non-graphene LMs are at two different stages of development. Graphene is more mature, and can now target functionalities beyond the state of the art in technologically relevant devices. In (opto-)electronics, photonics and sensors, graphene-based systems have already demonstrated extraordinary performance, with reduced power consumption, or photodetectors (PDs) with hyperspectral range for applications such as autonomous driving, where fast data exchange is a critical requisite for safe operation. Applications in light detection and ranging, security, ultrasensitive physical and chemical sensors for industrial, environmental and medical technologies are beginning to emerge and offer great promise. These technologies must be developed to achieve full industrial impact. The other non-graphene LMs are also at the centre of an ever increasing research effort as a new platform for quantum technology. They have already shown their potential, ranging from scalable components, such as quantum light sources, photon detectors and nanoscale sensors, to enabling new materials discovery within the broader field of quantum simulations. The challenge is understanding and tailoring the excitonic properties and the nature of the single photon emission process, as well as to make working integrated devices. Quantum emitters in LMs hold potential in terms of scalability, miniaturisation, integration with other systems and an extra quantum degree of freedom: the valley pseudospin. A major challenge is to go beyond lab demonstrators and show that LMs can achieve technological potential. The LMRF will accelerate this by enabling users to fabricate their devices in a scalable manner, with comparable technology to large-scale manufacturing foundries. This scalability is essential for LMs to become a disruptive technology. The vision is to combine the best of Silicon Photonics with LM-based optoelectronics, addressing key drawbacks of current platforms. ICT systems are the fastest growing consumers of electricity worldwide. Due to limitations set by current CMOS technology, energy efficiency reaches fundamental limits. LM-based optoelectronics builds on the optical/electronic integration ability of Silicon Photonics, which benefits product costs, but with modulator designs simpler than conventional Silicon Photonics at high data rates, giving lower power consumption.
石墨烯非常适合光电,由于其在室温,可调的光导率和波长独立吸收的高载流子迁移率,因此是理想的。石墨烯为许多分层材料(LMS)打开了闸门。对于给定的LM,可以通过改变层数及其相对方向来调整属性和应用的范围。可以通过堆叠不同的层来创建具有定制特性的LM异质结构(LMHS)。可以在成千上万的批量运行中可以去角质材料的数量,但迄今为止很少有人研究。 分层材料研究铸造厂(LMRF)将开发完全集成的LM-Silicon光子水平平台,为5G,6G和量子通信提供服务,从而促进新的设计概念,以解锁新的性能水平。石墨烯和其他非透明烯LM处于开发的两个不同阶段。石墨烯更加成熟,现在可以针对技术相关设备中最新技术的功能。在(光学)电子,光子学和传感器中,基于石墨烯的系统已经表现出非凡的性能,功耗降低或光电探测器(PDS)(PDS),用于应用程序(例如自动驾驶)的高光范围,其中快速数据交换是安全操作的关键必要条件。在光检测和范围内的应用,安全性,超敏化物理和化学传感器,用于工业,环境和医疗技术,开始出现并提供了巨大的希望。必须开发这些技术以实现全面的工业影响。作为量子技术的新平台,其他非磷酸LMS也是越来越多的研究工作的中心。他们已经显示出潜力,从可扩展的组件(例如量子光源,光子检测器和纳米级传感器)到在量子模拟的较宽领域内发现新材料的发现。挑战是理解和调整单个光子发射过程的激子特性以及制造工作集成设备的性质。 LMS中的量子发射器在可伸缩性,微型化,与其他系统的整合以及额外的量子自由度方面具有潜力:山谷伪一种。一个主要的挑战是超越实验室示威者,并表明LM可以发挥技术潜力。 LMRF将通过使用户能够以可扩展的方式制造其设备,并具有与大规模制造铸造厂相当的技术来加速此设备。这种可扩展性对于LMS成为一项破坏性技术至关重要。愿景是将最佳的硅光子学与基于LM的光电子学相结合,以解决当前平台的关键缺点。 ICT系统是全球增长最快的电力消费者。由于当前CMOS技术设定的限制,能源效率达到了基本限制。基于LM的光电学基于硅光子学的光学/电子整合能力,从而使产品成本受益,但调制器设计比传统的硅光子学以高数据速率更简单,从而提供较低的功率消耗。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-Induced Mode-Locking in Electrically Pumped Far-Infrared Random Lasers.
  • DOI:
    10.1002/advs.202206824
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Di Gaspare, Alessandra;Pistore, Valentino;Riccardi, Elisa;Pogna, Eva A. A.;Beere, Harvey E.;Ritchie, David A.;Li, Lianhe;Davies, Alexander Giles;Linfield, Edmund H.;Ferrari, Andrea C.;Vitiello, Miriam S.
  • 通讯作者:
    Vitiello, Miriam S.
Ultrafast Electronic Relaxation Dynamics of Atomically Thin MoS2 Is Accelerated by Wrinkling.
  • DOI:
    10.1021/acsnano.3c02917
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Ce Xu;Guoqing Zhou;E. Alexeev;A. Cadore;I. Paradisanos;A. Ott;G. Soavi;S. Tongay;G. Cerullo-G.-Cerul
  • 通讯作者:
    Ce Xu;Guoqing Zhou;E. Alexeev;A. Cadore;I. Paradisanos;A. Ott;G. Soavi;S. Tongay;G. Cerullo-G.-Cerul
Control of Raman Scattering Quantum Interference Pathways in Graphene.
石墨烯中拉曼散射量子干涉路径的控制。
  • DOI:
    10.17863/cam.95923
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen X
  • 通讯作者:
    Chen X
Mapping nanoscale carrier confinement in polycrystalline graphene by terahertz spectroscopy
  • DOI:
    10.1038/s41598-024-51548-z
  • 发表时间:
    2024-02-07
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Whelan,Patrick R.;De Fazio,Domenico;Boggild,Peter
  • 通讯作者:
    Boggild,Peter
Controlled Growth of Single-Crystal Graphene Wafers on Twin-Boundary-Free Cu(111) Substrates
  • DOI:
    10.1002/adma.202308802
  • 发表时间:
    2023-11-29
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Zhu,Yeshu;Zhang,Jincan;Liu,Zhongfan
  • 通讯作者:
    Liu,Zhongfan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Ferrari其他文献

Harnessing the Power of Metabarcoding in the Ecological Interpretation of Plant-Pollinator DNA Data: Strategies and Consequences of Filtering Approaches
利用元条形码的力量对植物传粉媒介 DNA 数据进行生态解释:过滤方法的策略和后果
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Tommasi;Andrea Ferrari;M. Labra;A. Galimberti;P. Biella
  • 通讯作者:
    P. Biella
The use of Matrigel at low concentration enhances in vitro blastocyst formation and hatching in a mouse embryo model.
使用低浓度的基质胶可增强小鼠胚胎模型中的体外囊胚形成和孵化。
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    L. Lazzaroni;F. Fusi;N. Doldi;Andrea Ferrari
  • 通讯作者:
    Andrea Ferrari
Local treatment in initially unresected non-rhabdomyosarcoma soft-tissue sarcomas of children and adolescents: A retrospective single-center experience.
儿童和青少年最初未切除的非横纹肌肉瘤软组织肉瘤的局部治疗:回顾性单中心经验。
  • DOI:
    10.1002/pbc.30901
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Andrea Ferrari;Sabina Vennarini;M. Fiore;L. Bergamaschi;S. Chiaravalli;C. Morosi;C. Colombo;E. Pecori;N. Puma;R. Luksch;M. Terenziani;F. Spreafico;C. Meazza;M. Podda;V. Biassoni;E. Schiavello;M. Massimino;M. Casanova
  • 通讯作者:
    M. Casanova
Glacier retreat triggers changes in biodiversity and plant–pollinator interaction diversity
冰川退缩引发生物多样性和植物与传粉媒介相互作用多样性的变化
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Bao Ngan Tu;Nora Khelidj;P. Cerretti;Natasha de Vere;Andrea Ferrari;Francesco Paone;C. Polidori;Jürg Schmid;Daniele Sommaggio;G. Losapio
  • 通讯作者:
    G. Losapio
Diagnostic Utility of a Modified Reticulin Algorithm in Pediatric Adrenocortical Neoplasms
改进的网状蛋白算法在小儿肾上腺皮质肿瘤中的诊断效用
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Oscar Lopez;C. Virgone;I. S. Kletskaya;Luisa Santoro;Stefano Giuliani;Bruce Okoye;M. Volante;Andrea Ferrari;G. Bisogno;Eleonora Duregon;M. Papotti;G. D. De Salvo;S. Ranganathan;Rita Alaggio
  • 通讯作者:
    Rita Alaggio

Andrea Ferrari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Ferrari', 18)}}的其他基金

Graphene Integrated Photonic Transceivers (GIPT)
石墨烯集成光子收发器(GIPT)
  • 批准号:
    EP/X026728/1
  • 财政年份:
    2022
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Research Grant
Highly conductive Ultraflexible Graphene
高导电性超柔性石墨烯
  • 批准号:
    EP/M507799/1
  • 财政年份:
    2015
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Research Grant
Graphene Flexible Electronics and Optoelectronics: Bridging The Gap Between Academia and Industry
石墨烯柔性电子和光电:弥合学术界和工业界之间的差距
  • 批准号:
    EP/K017144/1
  • 财政年份:
    2013
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Research Grant
Graphene Flexible Electronics and Optoelectronics
石墨烯柔性电子与光电子学
  • 批准号:
    EP/K01711X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Research Grant
Non-equilibrium and relaxation phenomena in graphene-based devices
石墨烯基器件中的非平衡和弛豫现象
  • 批准号:
    EP/G042357/1
  • 财政年份:
    2010
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Research Grant
Advanced waveguide laser source development using ultrafast laser inscription
使用超快激光刻字开发先进波导激光源
  • 批准号:
    EP/G030480/1
  • 财政年份:
    2009
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Research Grant
Follow On: Commercialisation of Nanotube-based Mode Lockers and Ultrafast Fibre Lasers
后续:基于纳米管的锁模器和超快光纤激光器的商业化
  • 批准号:
    EP/E500935/1
  • 财政年份:
    2007
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Research Grant

相似国自然基金

复合材料分层损伤的超声导波对向混频定位研究
  • 批准号:
    12304515
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MoC纳米枝晶/导电水凝胶分层多孔材料在微生物燃料电池中的产电储能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
基于分层拓扑结构的多共振力学超材料设计与宽带减振机理研究
  • 批准号:
    12202252
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
湿热环境下3D打印多向铺层复合材料多重界面开裂竞争机制及分层扩展规律研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于多尺度分层网络结构模型的可拉伸纤维增强软基复合材料的疲劳裂纹扩展行为与机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: RUI: Patterned Doping of Layered Materials
合作研究:RUI:层状材料的图案化掺杂
  • 批准号:
    2300639
  • 财政年份:
    2023
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
  • 批准号:
    2321302
  • 财政年份:
    2023
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
  • 批准号:
    2321301
  • 财政年份:
    2023
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Patterned Doping of Layered Materials
合作研究:RUI:层状材料的图案化掺杂
  • 批准号:
    2300640
  • 财政年份:
    2023
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Selective Extraction of Lithium from Seawater using Structurally Modified Metal Oxide Layered Materials
合作研究:使用结构改性金属氧化物层状材料从海水中选择性提取锂
  • 批准号:
    2227164
  • 财政年份:
    2023
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了