EVacuAted OptiCal Fibres for Ultimate UV-to-Infrared Light TransMission (VACUUM)

用于终极紫外到红外光传输(真空)的真空光纤

基本信息

  • 批准号:
    EP/W037440/1
  • 负责人:
  • 金额:
    $ 109.6万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Over the last four decades, optical fibres have revolutionised telecommunications and enabled Internet as we know it today. Sensing is another area where optical fibres are used, for example for monitoring engineering structures (e.g., strain and vibration along bridges, tunnels, etc.), or to deliver light for advanced instruments such as next-generation microscopes that can see material/tissue properties that are invisible with traditional instruments. Optical fibres are also leading a revolution in manufacturing by generating and delivering intense laser light capable of welding and cutting.However, conventional fibres, where light propagates through glass, cannot cope with such high powers due to the onset of nonlinear effects and material damage caused by the high light intensities. Glass absorption also limits the exploitation of fibre technologies in the visible and near/mid-infrared. These shortcomings are being addressed by the next generation of optical fibres, so-called hollow-core fibres that guide light through a central hole, thus avoiding significant light-glass interaction. Light in these fibres is guided thanks to a specially engineered glass microstructure built around a central hole. Recently, the design and manufacturing of this microstructure has been improved significantly and hollow-core fibres are now emerging with properties that surpass those of traditional fibres in almost every regard. In these novel fibres, light propagates through the core; in most cases the core contains air which enters the fibre during fabrication or onward handling. Although light interacts with air significantly less than with glass, this interaction nevertheless still imposes appreciable limitations. One example is absorption at wavelengths such as 1300 nm (due to water vapour) or in the mid-infrared (absorption of atmospheric gases). Another example relates to the transmission of high-power pulses (e.g., as needed for laser based welding) where nonlinear optical interactions with the air result in significant beam distortions. The ultimate solution would be to evacuate the fibre core, thereby eliminating the air-light interaction. Preliminary calculations show that evacuating a long length of hollow-core fibre (kilometres) would take impractically long (years) due to the small core diameter (typically ~0.03 mm). Techniques to characterize the gas pressure or content along the fibre length have also not been developed yet. Without such measurements, it is difficult to monitor the evacuation process, or to validate models that describe the evacuation process. This project is dedicated to investigating, theoretically and experimentally, techniques to accurately characterize the (residual) air pressure along a length of hollow-core fibre. Subsequently, we will research several solutions to reliably evacuate them over long lengths and to seal them while enabling low loss coupling of light in and out. Finally, we will demonstrate how these improved hollow-core fibres will enable next-generation applications, targeting three selected areas:1) telecommunications, where evacuation will enable communication over a large wavelength range, increasing several times how much data can be transmitted over a given time. 2) high-power laser pulses for welding/drilling/mining, but also bio-medical imaging, where we expect up to 100-1000 times larger powers to be deliverable through the evacuated hollow-core fibres as compared to air-filled ones and up to one million times more than with today's glass-core fibres. 3) transmission of mid-infrared light ("molecular fingerprint region") and demonstration of applications in remote hydrocarbon analysis, of interest, e.g., in oil wells. Evacuated hollow-core fibres will offer superior performance to any other fibre technology, ranging from guiding in the UV all the way to mid-infrared, opening new opportunities in science, technology, and applications.
在过去的四十年中,光纤彻底改变了电信业,并实现了我们今天所知的互联网。传感是使用光纤的另一个领域,例如用于监测工程结构(例如,桥梁、隧道等处的应变和振动),或者为先进仪器(例如可以观察材料/组织的下一代显微镜)传输光线传统仪器无法看到的特性。光纤还通过产生和传输能够焊接和切割的强激光,引领了制造业的一场革命。然而,光通过玻璃传播的传统光纤由于非线性效应的出现和造成的材料损坏而无法应对如此高的功率。通过高光强度。玻璃吸收还限制了纤维技术在可见光和近/中红外区域的应用。这些缺点正在被下一代光纤所解决,即所谓的空心光纤,它引导光穿过中心孔,从而避免显着的光与玻璃相互作用。这些光纤中的光通过围绕中心孔构建的特殊设计的玻璃微结构进行引导。最近,这种微结构的设计和制造得到了显着改进,空心纤维的出现几乎在所有方面都超过了传统纤维的性能。在这些新型光纤中,光通过纤芯传播;在大多数情况下,纤芯中含有空气,空气会在制造或后续处理过程中进入光纤。尽管光与空气的相互作用远小于与玻璃的相互作用,但这种相互作用仍然具有明显的局限性。一个例子是 1300 nm 等波长(由于水蒸气)或中红外(大气气体的吸收)的吸收。另一个例子涉及高功率脉冲的传输(例如,根据激光焊接的需要),其中与空气的非线性光学相互作用导致显着的光束畸变。最终的解决方案是抽空纤芯,从而消除空气与光的相互作用。初步计算表明,由于纤芯直径较小(通常约为 0.03 毫米),疏散较长长度(公里)的空心光纤将花费不切实际的时间(数年)。表征沿纤维长度的气体压力或含量的技术也尚未开发出来。如果没有这样的测量,就很难监控疏散过程,或验证描述疏散过程的模型。该项目致力于从理论上和实验上研究精确表征沿空心光纤长度的(残余)气压的技术。随后,我们将研究几种解决方案,以在长距离上可靠地疏散它们并密封它们,同时实现光进出的低损耗耦合。最后,我们将演示这些改进的空心光纤如何实现下一代应用,针对三个选定领域:1)电信,其中疏散将实现大波长范围内的通信,从而使通过光纤传输的数据量增加数倍。给定时间。 2) 用于焊接/钻孔/采矿以及生物医学成像的高功率激光脉冲,与充气光纤相比,我们预计通过抽空空心光纤可提供高达 100-1000 倍的功率,比当今的玻璃芯纤维高出一百万倍。 3)中红外光(“分子指纹区域”)的传输和在感兴趣的远程碳氢化合物分析中的应用演示,例如在油井中。真空空心光纤将提供比任何其他光纤技术更优越的性能,从紫外线一直到中红外线,为科学、技术和应用领域开辟了新的机遇。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Support-Free Thermally Insensitive Hollow Core Fiber Coil
  • DOI:
    10.1109/jlt.2023.3241255
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Xuhao Wei;A. Taranta;Bo Shi;Meng Ding;Zitong Feng;D. Richardson;F. Poletti;R. Slavík
  • 通讯作者:
    Xuhao Wei;A. Taranta;Bo Shi;Meng Ding;Zitong Feng;D. Richardson;F. Poletti;R. Slavík
Direct and low-loss connection between a hollow-core optical fiber and a dispersion compensating fiber for dispersion-free delivery of short optical pulses in hollow-core fiber
空心光纤和色散补偿光纤之间的直接低损耗连接,用于在空心光纤中无色散传输短光脉冲
  • DOI:
    10.1117/12.2648720
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhong A
  • 通讯作者:
    Zhong A
All-fiber hollow-core fiber gas cell
  • DOI:
    10.1016/j.yofte.2023.103513
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    D. Suslov;M. Komanec;T. Kelly;Ailing Zhong;Stanislav Zvánovec;Francesco Poletti;N. Wheeler;Radan Slavík
  • 通讯作者:
    D. Suslov;M. Komanec;T. Kelly;Ailing Zhong;Stanislav Zvánovec;Francesco Poletti;N. Wheeler;Radan Slavík
Interconnectivity between effectively single-moded antiresonant hollow core fibres and conventional single-mode fibres
  • DOI:
    10.1016/j.yofte.2023.103541
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Radan Slavík;M. Komanec;E. N. Numkam Fokoua
  • 通讯作者:
    Radan Slavík;M. Komanec;E. N. Numkam Fokoua
Gap design to enable functionalities into nested antiresonant nodeless fiber based systems.
间隙设计可将功能集成到基于嵌套反谐振无节点光纤的系统中。
  • DOI:
    10.1364/oe.480760
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Zhong A
  • 通讯作者:
    Zhong A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Radan Slavik其他文献

Radan Slavik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Radan Slavik', 18)}}的其他基金

Overcoming Capacity and Energy Limits in Optical Communications
克服光通信中的容量和能量限制
  • 批准号:
    EP/K003038/1
  • 财政年份:
    2012
  • 资助金额:
    $ 109.6万
  • 项目类别:
    Fellowship

相似国自然基金

纤维素纳米晶基诱导圆二色性微球的构筑与光学性能研究
  • 批准号:
    22375073
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
三维光声-光学全偏振成像及脑神经纤维构型的高分辨显微研究
  • 批准号:
    62335007
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
纳米纤维素纸基光学微结构的集体重构与演变机制研究
  • 批准号:
    22378144
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
再生纤维素基光学膜材料的构建及其构效调控策略
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分子尺度纤维素手性向列结构螺距的调控及光学性能研究
  • 批准号:
    32101468
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FASTNET - Revolutionary hollow core low-latency fibres and cables for ultrafast next-generation optical networks
FASTNET - 用于超快下一代光网络的革命性空心低延迟光纤和电缆
  • 批准号:
    EP/X025276/1
  • 财政年份:
    2023
  • 资助金额:
    $ 109.6万
  • 项目类别:
    Research Grant
Environmental Monitoring using off-shore wind and tidal power optical fibres
使用海上风能和潮汐能光纤进行环境监测
  • 批准号:
    2888269
  • 财政年份:
    2023
  • 资助金额:
    $ 109.6万
  • 项目类别:
    Studentship
Development of advanced rare-earth doped optical fibres for high-power laser applications
开发用于高功率激光应用的先进稀土掺杂光纤
  • 批准号:
    2890539
  • 财政年份:
    2023
  • 资助金额:
    $ 109.6万
  • 项目类别:
    Studentship
Ultra-low-loss fluoride glass optical fibres for the future global network
用于未来全球网络的超低损耗氟化物玻璃光纤
  • 批准号:
    LP220100403
  • 财政年份:
    2023
  • 资助金额:
    $ 109.6万
  • 项目类别:
    Linkage Projects
Vacuum hollow-core optical fibres
真空空心光纤
  • 批准号:
    2889076
  • 财政年份:
    2023
  • 资助金额:
    $ 109.6万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了