Grid Scale Thermal and Thermo-Chemical Electricity Storage
电网规模热能和热化学电能存储
基本信息
- 批准号:EP/W027860/1
- 负责人:
- 金额:$ 136.38万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Thermo-chemical energy storage (TCES) has the potential to store very large amounts of energy within a small space and at low cost. This is achieved by converting thermal energy ('heat') to chemical energy via a reversible chemical reaction. For example, by heating a granular metallic oxide to the right temperature and at the right pressure, some of the oxygen is driven off (i.e., the substance is 'reduced') and heat is absorbed during the process. The resulting 'reduced oxide' is stable and can be stored for long periods without degradation. Heat can subsequently be recovered, when required, by passing air at elevated pressure over the reduced oxide. Some of the oxygen in the air is then absorbed but the remaining gas is heated by the reaction and (since it is also at high pressure) can be used to drive a gas turbine to generate electricity.Other gas-solid reactions are also possible, including 'calcination' of limestone (i.e., heating it up to drive off carbon dioxide) and hydration (with steam) of e.g. calcium oxide. Each reaction has its own set of peculiarities which can be exploited to its advantage. For example, the carbon dioxide emerging from the calcination reaction can be compressed and liquefied. This in itself absorbs electrical energy (in order to drive the compressors) and constitutes an additional, surprisingly compact and stable form of energy storage, from which electricity can be recovered by using the high-pressure CO2 to drive a turbo-generator. Compared with batteries, TCES has the potential to store energy at much lower cost per kilowatt-hour of storage capacity at grid scale, despite having a lower round trip efficiency. This is because TCES systems can be built based on unit operations and power plant technologies which scale up easily, compared to electrochemical systems. The efficiency for a thermo-chemical system is likely to be in the range 40 to 60%, however the 'conservation of energy', means that the remaining energy need not be wasted: it can be exploited for heating buildings, providing hot water or supplying heat for industrial processes. Furthermore, these systems offer the possibility to provide long duration storage without any safety hazards or pressurised storage facilities. How these technologies can contribute to various grid services, the scale needed and how best to locate them within the distribution network needs to be assessed. Many of the components have inertia, which will provide some frequency support, but the thermal response may limit service provision, particularly if waste heat is also being utilised. In this grant we will develop and test new materials to enable more efficient and cost effective TCES processes. Issues investigated include the cycle stability of the materials, their capacities and rates of conversion. Lab scale testing will demonstrate key aspects of the cycles and provide information needed for design and modelling work to evaluate these processes. We will conduct modelling on the process flowsheet, with detailed component models to allow losses to be identified and the process and material combinations to be optimised. To understand the value of these technologies to society, we will conduct system level dynamic modelling to understand their ability to provide grid services under various scenarios, including those in which there is the provision of thermal energy for district/industrial heating applications. We will analyse and quantify the grid-scale integration potentialities of TCES technology by adopting a whole-system approach, thus its integration with electricity/heating/cooling/gas networks. This will allow us to unlock the opportunities offered by this novel multi-energy storage technology to enhance the flexibility of the energy grid as a whole, and thus enable a future energy system with a high penetration of renewables
热化学能源储存(TCE)有可能在较小的空间内以低成本存储大量能量。这是通过通过可逆化学反应将热能(“热”)转换为化学能的方法来实现的。例如,通过将颗粒状的金属氧化物加热到正确的温度并在正确的压力下,某些氧气被驱除(即,该物质被“减少”),并且在此过程中将热量吸收。由此产生的“减少氧化物”是稳定的,可以长期存储而不会降解。在需要时,可以通过在较低的氧化物上将空气传递到空气时,随后可以回收热量。然后吸收空气中的某些氧气,但剩余的气体被反应加热,并且(因为它也处于高压下)可用于驱动燃气轮机以发电。其他燃气反应也是可能的,包括石灰石的“钙化”(即,将其加热以驱动碳二氧化碳和二氧化碳)和E.G的水。氧化钙。每个反应都有自己的一套特殊性,可以利用其优势。例如,可以压缩和液化钙化反应中出现的二氧化碳。这本身会吸收电能(为了驱动压缩机),并构成了一种额外的,令人惊讶的紧凑且稳定的能量存储形式,可以通过使用高压二氧化碳来驱动涡轮发电机来从中回收电力。与电池相比,尽管往返效率较低,但TCE有可能以电网尺度的每千瓦时存储容量的成本低得多。这是因为与电化学系统相比,可以基于单位操作和发电厂技术来构建TCES系统。热化学系统的效率可能在40%至60%的范围内,但是“能源保护”意味着不需要浪费剩余的能源:可以利用它用于加热建筑物,为热水提供热水或为工业过程提供热量。此外,这些系统还提供了提供长时间存储的可能性,而没有任何安全危害或加压存储设施。这些技术如何为各种网格服务,所需的规模以及如何在分销网络中找到它们,需要评估它们。许多组件具有惯性,这将提供一些频率支持,但是热响应可能会限制服务提供,尤其是在使用废热的情况下。在这笔赠款中,我们将开发和测试新材料,以实现更高效和更具成本效益的TCE流程。研究的问题包括材料的周期稳定性,它们的能力和转换率。实验室比例测试将展示周期的关键方面,并提供设计和建模工作所需的信息来评估这些过程。我们将在过程流程表上进行建模,并使用详细的组件模型来识别损失,并优化过程和材料组合。为了了解这些技术对社会的价值,我们将进行系统级别的动态建模,以了解其在各种情况下提供网格服务的能力,包括为地区/工业供暖应用提供热能的能力。我们将通过采用全系统方法来分析和量化TCE技术的网格尺度集成潜力,从而与电力/加热/冷却/气体网络的整合。这将使我们能够释放这种新颖的多能存储技术提供的机会,以增强整个能源网格的灵活性,从而使未来的能源系统具有很高的可再生能源渗透率
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stuart Scott其他文献
QUANTITATIVE PHARMACOGENOMICS OF THE ANTICOAGULANT RESPONSE TO WARFARIN IN HEALTHY SUBJECTS
- DOI:
10.1016/s0735-1097(11)61286-2 - 发表时间:
2011-04-05 - 期刊:
- 影响因子:
- 作者:
Sarina Van der Zee;Stuart Scott;Dana Doheny;Elizabeth Rothlauf;Inga Peter;Leah Blanchard;Daniella Kadian-Dodov;Steven Lubitz;Robert J.J. Desnick;Jonathan L. Halperin - 通讯作者:
Jonathan L. Halperin
P525: Medical genetics providers require training and institutional support to integrate pharmacogenomic testing
- DOI:
10.1016/j.gimo.2024.101424 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
John Imbrie;Christina Tise;Kendall Schmidt;Hetanshi Naik;Stuart Scott - 通讯作者:
Stuart Scott
P178: The ClinGen Pharmacogenomics Working Group: Developing a framework for gene-drug response clinical validity
- DOI:
10.1016/j.gimo.2023.100207 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Li Gong;Clarissa Klein;Michelle Whirl-Carrillo;Stuart Scott;Teri Klein - 通讯作者:
Teri Klein
P179: The ClinGen Pharmacogenomics Working Group: Developing frameworks for evaluating pharmacogenomic gene validity and actionability
- DOI:
10.1016/j.gimo.2024.101076 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Li Gong;Michelle Whirl-Carrillo;Stuart Scott;Kelly Caudle;Ann Moyer;Clarissa Klein;Teri Klein - 通讯作者:
Teri Klein
The condomlessness of bareback sex: Responses to the unrepresentability of HIV in Treasure Island Media’s Plantin’ Seed and Slammed
无安全套的无鞍性行为:金银岛媒体的《Plantin’ Seed and Slammed》中对艾滋病病毒不可代表性的回应
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Stuart Scott - 通讯作者:
Stuart Scott
Stuart Scott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stuart Scott', 18)}}的其他基金
Boosting Reduction of Energy Intensity in cleaN STeelwork platfORM
清洁钢铁平台推动能源强度降低
- 批准号:
EP/S030387/1 - 财政年份:2019
- 资助金额:
$ 136.38万 - 项目类别:
Research Grant
ORACLE: Odorant RemovAl by Chemical Looping dEsulphurisation
ORACLE:通过化学循环脱硫去除臭气
- 批准号:
EP/N509887/1 - 财政年份:2015
- 资助金额:
$ 136.38万 - 项目类别:
Research Grant
Minerals for Sustainable COst and energy efficient chemical looping combUstion Technology
用于可持续成本和能源效率的矿物化学循环燃烧技术
- 批准号:
EP/L022427/1 - 财政年份:2014
- 资助金额:
$ 136.38万 - 项目类别:
Research Grant
Energy and the Physical Sciences: Advanced materials for thermo-chemical oxygen storage and production
能源和物理科学:用于热化学储氧和生产的先进材料
- 批准号:
EP/K030132/1 - 财政年份:2013
- 资助金额:
$ 136.38万 - 项目类别:
Research Grant
Multi-scale evaluation of advanced technologies for capturing the CO2: chemical looping applied to solid fuels.
捕获二氧化碳的先进技术的多尺度评估:应用于固体燃料的化学循环。
- 批准号:
EP/I010912/1 - 财政年份:2011
- 资助金额:
$ 136.38万 - 项目类别:
Research Grant
Joint UK / China Hydrogen production network
英国/中国联合制氢网络
- 批准号:
EP/G063265/1 - 财政年份:2010
- 资助金额:
$ 136.38万 - 项目类别:
Research Grant
Planning Meeting for Multiphase Drag Reduction Section of NSF I/UC for Multiphase Corrosion Research Center
NSF I/UC 多相腐蚀研究中心多相减阻部分规划会议
- 批准号:
9729258 - 财政年份:1997
- 资助金额:
$ 136.38万 - 项目类别:
Standard Grant
相似国自然基金
规模化屋顶光伏与室外热环境的交互作用机制
- 批准号:52208110
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用大规模反应分子动力学揭示热解焦炭结构的时空演化规律
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
计及电-热-老化行为的大规模退役动力电池梯次利用理论与方法研究
- 批准号:62203352
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用大规模反应分子动力学揭示热解焦炭结构的时空演化规律
- 批准号:22279145
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
计及电-热-老化行为的大规模退役动力电池梯次利用理论与方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Implementing HIV/Cervical Cancer Prevention CASCADE Clinical Trials in Zimbabwe (ZIM-CASCADE)
在津巴布韦实施艾滋病毒/宫颈癌预防 CASCADE 临床试验 (ZIM-CASCADE)
- 批准号:
10758129 - 财政年份:2023
- 资助金额:
$ 136.38万 - 项目类别:
Silicon Photonic Integrated Circuits for Chip-Scale Thermal and Cold Atom Sensors
用于芯片级热原子和冷原子传感器的硅光子集成电路
- 批准号:
2887681 - 财政年份:2023
- 资助金额:
$ 136.38万 - 项目类别:
Studentship
Multi-scale modeling of thermal and fluid flow of cryogenic liquid hydrogen applied for liquid rocket propulsion system
用于液体火箭推进系统的低温液氢热流和流体流的多尺度建模
- 批准号:
23H01606 - 财政年份:2023
- 资助金额:
$ 136.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Resolving multi-scale ecological consequences of thermal refuges amidst climate warming
职业:解决气候变暖过程中避难所的多尺度生态后果
- 批准号:
2236526 - 财政年份:2023
- 资助金额:
$ 136.38万 - 项目类别:
Continuing Grant
Thermal-plex: fluidic-free, rapid sequential multiplexed imaging of RNA and protein in brain tissues
Thermal-plex:脑组织中 RNA 和蛋白质的无流体快速连续多重成像
- 批准号:
10640313 - 财政年份:2023
- 资助金额:
$ 136.38万 - 项目类别: