Global motivic homotopy theory

全局动机同伦理论

基本信息

  • 批准号:
    EP/W012030/1
  • 负责人:
  • 金额:
    $ 7.41万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

This research proposal is in the areas of mathematics known as algebraic geometry and homotopy theory. Algebraic geometry studies algebraic varieties which are of principal importance. First they are relatively easy to understand since they are just defined by polynomial equations, next they usually give a rather accurate approximation to other shapes, most importantly they do appear naturally in quite a lot of subjects in theoretical physics, coding theory and computer sciences. That is why algebraic geometry - the theory of algebraic varieties is so important for the development and applications of mathematics. Homotopy theory is a considerably newer area of mathematics, being an important branch of algebraic topology, the modern development of what is popularly known as "rubber-sheet geometry", that is, the study of the properties of curves, surfaces and objects of higher dimension which are preserved under operations such as bending and stretching; in homotopy theory one allows additional modifications by "continuous deformation". Since its creation homotopy theory has become an essential component of modern mathematics. Homotopy theory has numerous applications both in and out of mathematics, including theoretical physics and computer sciences.Motivic homotopy theory is a blend of algebraic geometry and homotopy theory. Its primary object is to study algebraic varieties from a homotopy theoretic viewpoint. Many of the basic ideas and techniques in this subject originate in algebraic topology. Motivic homotopy theory led to such striking applications as the solution of the Milnor conjecture and the Bloch-Kato conjecture, in algebraic geometry. Besides these quite spectacular applications, the fact that one can use the ideas and techniques of homotopy theory to solve problems in algebraic geometry has attracted mathematicians from both fields and has led to a wealth of new constructions and applications.The principal aim of this project is to develop global motivic homotopy theory, investigate motivic equivariant spectra and a range of associated cohomology theories of algebraic varieties. Its study will shed light on some classical problems in motivic homotopy theory. Also, we want to apply methods of global motivic homotopy theory to classical global algebraic topology. We believe that these investigations will have important computational advantages. The homotopy-theoretic and geometric outlook that we develop will also be useful in other areas of mathematics such as algebraic topology, non-commutative geometry and mathematical physics.Effective developments of the project objectives require methods of algebraic geometry, motivic homotopy theory, equivariant topology and representation theory.
这项研究提案属于代数几何和同伦理论的数学领域。代数几何研究最重要的代数簇。首先,它们相对容易理解,因为它们只是由多项式方程定义,其次它们通常对其他形状给出相当准确的近似,最重要的是它们确实自然地出现在理论物理、编码理论和计算机科学的很多学科中。这就是为什么代数几何——代数簇理论对于数学的发展和应用如此重要。同伦论是数学中一个相当新的领域,是代数拓扑的一个重要分支,是众所周知的“橡皮片几何”的现代发展,即研究高等数学的曲线、曲面和物体的性质。在弯曲和拉伸等操作下保留的尺寸;在同伦理论中,允许通过“连续变形”进行额外的修改。自诞生以来,同伦理论已成为现代数学的重要组成部分。同伦理论在数学内外都有许多应用,包括理论物理和计算机科学。动机同伦理论是代数几何和同伦理论的融合。其主要目的是从同伦理论的角度研究代数簇。本学科的许多基本思想和技术都源于代数拓扑。动机同伦理论在代数几何中带来了诸如米尔诺猜想和布洛赫-加藤猜想的​​解等引人注目的应用。除了这些相当引人注目的应用之外,可以使用同伦理论的思想和技术来解决代数几何中的问题这一事实也吸引了来自这两个领域的数学家,并带来了大量新的构造和应用。该项目的主要目的是发展全局动机同伦理论,研究动机等变谱和一系列相关的代数簇上同调理论。它的研究将揭示动机同伦理论中的一些经典问题。此外,我们希望将全局动机同伦理论的方法应用到经典的全局代数拓扑中。我们相信这些研究将具有重要的计算优势。我们开发的同伦理论和几何观点也将在其他数学领域有用,例如代数拓扑、非交换几何和数学物理。项目目标的有效发展需要代数几何、动机同伦理论、等变拓扑的方法和表示论。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Semilocal Milnor K-Theory
半局部米尔诺K理论
Correspondences and stable homotopy theory
对应与稳定同伦理论
Group schemes and motivic spectra
群方案和动机谱
  • DOI:
    10.1007/s11856-023-2492-x
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Garkusha G
  • 通讯作者:
    Garkusha G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Grigory Garkusha其他文献

Grigory Garkusha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Grigory Garkusha', 18)}}的其他基金

Enriched motivic homotopy theory
丰富的动机同伦理论
  • 批准号:
    EP/J013064/1
  • 财政年份:
    2012
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Research Grant
Symplectically oriented cohomology theories of algebraic varieties
代数簇的面向辛的上同调理论
  • 批准号:
    EP/H021566/1
  • 财政年份:
    2010
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Research Grant

相似国自然基金

化肥减量配施紫云英下红壤水稻土溶解性有机质组成结构演变及其驱动机制
  • 批准号:
    32360805
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
热化学非平衡下高马赫数超燃冲压发动机热力分析及其流道自动化设计
  • 批准号:
    52306006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
骤旱向季节性干旱演变的驱动机制及其对植被的影响机理
  • 批准号:
    52309032
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
飞行状态下发动机转子-弹性阻尼支承系统动力特性及减振性能研究
  • 批准号:
    12302066
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于陆基和卫星遥感的富营养化湖泊溶解氧时空多尺度变化及驱动机制
  • 批准号:
    42301443
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
  • 批准号:
    2427220
  • 财政年份:
    2024
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
  • 批准号:
    2328867
  • 财政年份:
    2023
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Standard Grant
RUI: Motivic, Operadic, and Combinatorial Homotopy Theory
RUI:动机、操作和组合同伦理论
  • 批准号:
    2204365
  • 财政年份:
    2022
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Continuing Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
  • 批准号:
    2204357
  • 财政年份:
    2022
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Standard Grant
Analyzing algebraic varieties from the point of view of motivic homotopy theory
从动机同伦论的角度分析代数簇
  • 批准号:
    2101898
  • 财政年份:
    2021
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了