Augmenting flow simulations with experimental data to improve aerodynamic efficiency

利用实验数据增强流动模拟以提高空气动力效率

基本信息

  • 批准号:
    EP/W009935/1
  • 负责人:
  • 金额:
    $ 35.26万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Numerical simulations play an important role in aerodynamic design since experimental measurements are typically limited and difficult to measure in all regions of the flow. Simulations can provide significantly more information than experiments, but modelling assumptions are necessary since it is not computationally tractable to simulate realistic flow conditions. In many industrial applications, for example, simulations solve the time-averaged equations using a turbulence model. The resulting simulations are then validated using the limited experimental data that are available. This project investigates a more active role for experimental data by using it as an input to simulations. Experimental measurements, which are incomplete and uncertain, are fed into a low-fidelity simulation to produce a hybrid flow field that mimics large-scale features in the experiment. This procedure, known as data-assimilation, seeks to address the deficiencies of experimental data and modelling ambiguities in simulations to produce better flow predictions. Data assimilation is of particular interest to fluid mechanics since the resources that are required for a high resolution experiment or a full-fidelity simulation are often prohibitively expensive. As such, data assimilation is the only realistic option to predict complicated flows at an affordable cost. These predictions are essential not only for design, but also for understanding how flows can be manipulated by control to reduce drag and increase aerodynamic efficiency. A rigorous framework, which can accommodate three-dimensional flows and control devices, is needed for predicting and manipulating industrial flows. The project will culminate in a tool that can convert limited experimental data around complex geometries into a fully resolved velocity field in order to improve aerodynamic design. This work will data-assimilate incomplete experimental measurements of three-dimensional velocity fields around a model vehicle to improve simulation-based predictions of mean flow quantities. The trial data will consist of a simulation that has been intentionally corrupted to resemble experimental data. In other words, the input data will be disjointed, noisy and sporadic. Moreover, these data will be systematically reduced in order to identify the minimum number of measurements that are required for successful data assimilation. Once this has been achieved, the framework will be applied to experimental data from a wind tunnel. The improved mean flow field will be used to design a control strategy that reduces drag using synthetic jets on the vehicle. Finally, the controlled flow will be data-assimilated to quantify the reduction in drag.
数值模拟在空气动力学设计中发挥着重要作用,因为实验测量通常是有限的并且难以在所有流动区域进行测量。模拟可以提供比实验更多的信息,但建模假设是必要的,因为模拟实际流动条件在计算上不容易处理。例如,在许多工业应用中,模拟使用湍流模型求解时间平均方程。然后使用有限的可用实验数据验证所得到的模拟。该项目通过将实验数据用作模拟的输入来研究其更积极的作用。不完整且不确定的实验测量被输入低保真度模拟中,以产生模拟实验中大规模特征的混合流场。这一过程称为数据同化,旨在解决模拟中实验数据和建模模糊性的缺陷,以产生更好的流量预测。数据同化对流体力学特别重要,因为高分辨率实验或全保真模拟所需的资源通常非常昂贵。因此,数据同化是以可承受的成本预测复杂流动的唯一现实选择。这些预测不仅对于设计至关重要,而且对于理解如何通过控制来操纵流动以减少阻力并提高空气动力效率也至关重要。预测和操纵工业流需要一个能够容纳三维流和控制设备的严格框架。该项目最终将开发出一种工具,可以将复杂几何形状的有限实验数据转换为完全解析的速度场,以改进空气动力学设计。这项工作将对模型车辆周围三维速度场的不完整实验测量进行数据同化,以改进基于模拟的平均流量预测。试验数据将由一个模拟组成,该模拟已被故意破坏以类似于实验数据。换句话说,输入数据将是脱节的、嘈杂的和零散的。此外,这些数据将被系统地减少,以确定成功数据同化所需的最少测量次数。一旦实现这一点,该框架将应用于风洞的实验数据。改进的平均流场将用于设计一种控制策略,通过车辆上的合成射流减少阻力。最后,受控流将被数据同化以量化阻力的减少。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sean Symon其他文献

Sean Symon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

载药锌合金在模拟血液流动微流控系统中的降解及药物释放研究
  • 批准号:
    51801164
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
高速注射纤维增强聚合物取向和相形态的建模-模拟及机理分析
  • 批准号:
    11671321
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
增强高阶格式分辨率新方法研究及对旋转爆震流动不稳定性的模拟分析
  • 批准号:
    91541105
  • 批准年份:
    2015
  • 资助金额:
    65.0 万元
  • 项目类别:
    重大研究计划
增强体对钛基复合材料离心铸造行为的影响机制
  • 批准号:
    51504151
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
增强燃烧掺混的方法和机理研究
  • 批准号:
    90205036
  • 批准年份:
    2002
  • 资助金额:
    28.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

CAREER: High fidelity numerical simulations of turbulent flow separation at high Reynolds numbers with passive scalar transport.
职业:采用被动标量传输的高雷诺数湍流分离的高保真度数值模​​拟。
  • 批准号:
    2314303
  • 财政年份:
    2023
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Standard Grant
High-fidelity transonic buffet simulations on heterogenous exa-scale supercomputers
异构亿亿级超级计算机上的高保真跨音速抖振模拟
  • 批准号:
    22KF0421
  • 财政年份:
    2023
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Improvement of the debris flow prediction by developing topographic surveys and numerical simulations
通过开展地形调查和数值模拟改进泥石流预测
  • 批准号:
    23H02250
  • 财政年份:
    2023
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Physics-inspired Coarsening for Turbulent Flow Simulations
用于湍流模拟的物理启发粗化
  • 批准号:
    2152373
  • 财政年份:
    2022
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Standard Grant
Mechanistic Relationships Between Fibrosis, Fibrillation, and Stroke: Multi-Scale, Multi-Physics Simulations
纤维化、颤动和中风之间的机制关系:多尺度、多物理场模拟
  • 批准号:
    10441932
  • 财政年份:
    2022
  • 资助金额:
    $ 35.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了