CBET-EPSRC: Surfactant impact on drag reduction of superhydrophobic surfaces in turbulent flows

CBET-EPSRC:表面活性剂对湍流中超疏水表面减阻的影响

基本信息

  • 批准号:
    EP/T030739/1
  • 负责人:
  • 金额:
    $ 43.39万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Superhydrophobic surfaces (SHS) are bio-inspired engineered surfaces or coatings with several surprising and useful properties. By trapping air inside micro cavities, SHS can prevent small amounts of liquid such as water droplets from spreading on the surface, leading to the well-known lotus-leaf effect. When immersed in water, SHS can reduce friction drag between the liquid and the surface, owing to the entrapped air layer. Drag reduction from SHS has the potential to substantially reduce energy use, gas emissions and costs in maritime transport, and numerous other applications in fluid dynamics and heat transfer. Following the 2018 meeting of the International Maritime Organisation, the UK decided to reach zero gas emissions in British maritime shipping by 2050. Drag reduction technologies such as SHS can significantly contribute towards achieving this important environmental goal, whilst providing new economic opportunities in green technologies.However, SHS have shown inconsistent performance when tested in the lab or in the field, in both laminar and turbulent flow conditions. Many results deviate significantly from theoretical and numerical predictions. Our recent experimental, numerical and theoretical work has revealed that trace amounts of surfactant can significantly impair the drag-reduction performance of SHS in laminar flows. Surfactants are naturally present in oceans and rivers, as well as most engineering applications. Their impact on SHS in turbulent flow conditions is presently unknown. Building on our recent work on laminar flows, we hypothesize that surfactant can also affect the performance of SHS in turbulent flows, explaining inconsistencies found in experimental tests and the mismatch with existing models, which currently all ignore surfactant.To investigate this hypothesis, our multi-national team, composed of experts in numerical simulation from the University of California Santa Barbara (US) and experts in theoretical modelling from the University of Manchester (UK), will perform the first ever fundamental modelling investigation of superhydrophobic drag reduction in turbulent flow with surfactant. We will implement fully-resolved numerical simulations of surfactant-inclusive turbulent flow above SHS, using special refinement techniques in order to reach flow regimes relevant to realistic conditions for maritime applications. In addition, simpler theoretical models will be developed to identify and predict key physical and surfactant processes. The theoretical models will give us the flexibility to explore rapidly the complex dynamics of how surfactant can affect SHS drag reduction in turbulent flows. The numerical simulations will provide a wealth of detailed information about the flow dynamics and the effect of surfactants, and will be used to validate our theoretical models.To increase the impact of our findings, highly resolved data from our numerical simulations and algorithms implementing our models will be made freely available online. This will allow researchers to readily exploit our results in order to optimize SHS designs and improve their performance even when surfactant is present. Our objective is to uncover the impact of surfactant in realistic conditions in order to identify practical mitigation strategies and unlock the drag-reduction potential of SHS for real-world applications.
超疏水表面 (SHS) 是仿生工程表面或涂层,具有多种令人惊讶且有用的特性。通过将空气捕获在微腔内,SHS 可以防止少量液体(例如水滴)在表面扩散,从而产生众所周知的荷叶效应。当浸入水中时,由于截留的空气层,SHS 可以减少液体与表面之间的摩擦阻力。 SHS 减阻有可能大幅减少海上运输以及流体动力学和传热领域的许多其他应用的能源使用、气体排放和成本。继 2018 年国际海事组织会议之后,英国决定到 2050 年在英国海运中实现气体零排放。SHS 等减阻技术可以为实现这一重要的环境目标做出重大贡献,同时为绿色技术提供新的经济机会。然而,在实验室或现场测试时,SHS 在层流和湍流条件下表现出不一致的性能。许多结果与理论和数值预测存在显着偏差。我们最近的实验、数值和理论工作表明,痕量的表面活性剂会显着损害 SHS 在层流中的减阻性能。表面活性剂天然存在于海洋和河流以及大多数工程应用中。它们对湍流条件下的 SHS 的影响目前尚不清楚。基于我们最近关于层流的工作,我们假设表面活性剂也会影响 SHS 在湍流中的性能,解释了实验测试中发现的不一致以及与现有模型的不匹配,这些模型目前都忽略了表面活性剂。 -由美国加州大学圣塔芭芭拉分校数值模拟专家和英国曼彻斯特大学理论建模专家组成的国家团队将在超疏水减阻领域开展有史以来的首次基础建模研究具有表面活性剂的湍流。我们将使用特殊的细化技术对 SHS 上方包含表面活性剂的湍流进行完全解析的数值模拟,以达到与海上应用的实际条件相关的流动状态。此外,还将开发更简单的理论模型来识别和预测关键的物理和表面活性剂过程。理论模型将使我们能够灵活地快速探索表面活性剂如何影响湍流中 SHS 减阻的复杂动力学。数值模拟将提供有关流动动力学和表面活性剂影响的大量详细信息,并将用于验证我们的理论模型。为了提高我们研究结果的影响力,我们的数值模拟和实现模型的算法提供了高分辨率数据将在网上免费提供。这将使研究人员能够轻松利用我们的结果来优化 SHS 设计并提高其性能,即使存在表面活性剂也是如此。我们的目标是揭示表面活性剂在现实条件下的影响,以确定实际的缓解策略并释放 SHS 在实际应用中的减阻潜力。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Laminar drag reduction in surfactant-contaminated superhydrophobic channels
表面活性剂污染的超疏水通道中的层流减阻
  • DOI:
    10.1017/jfm.2023.264
  • 发表时间:
    2022-09-11
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Samuel D. Tomlinson;F. Gibou;P. Luzzatto‐Fegiz;Fern;o Temprano;o;O. Jensen;J. L;el;el
  • 通讯作者:
    el
Confinement-induced drift in Marangoni-driven transport of surfactant: a Lagrangian perspective
马兰戈尼驱动的表面活性剂传输中约束引起的漂移:拉格朗日视角
  • DOI:
    http://dx.10.48550/arxiv.2310.09559
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mcnair R
  • 通讯作者:
    Mcnair R
Unsteady evolution of slip and drag in surfactant-contaminated superhydrophobic channels
表面活性剂污染的超疏水通道中滑移和阻力的不稳定演化
  • DOI:
    http://dx.10.48550/arxiv.2310.18184
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomlinson S
  • 通讯作者:
    Tomlinson S
A model for slip and drag in turbulent flows over superhydrophobic surfaces with surfactant
具有表面活性剂的超疏水表面湍流中的滑移和阻力模型
Laminar drag reduction in surfactant-contaminated superhydrophobic channels
表面活性剂污染的超疏水通道中的层流减阻
  • DOI:
    http://dx.10.48550/arxiv.2209.04834
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomlinson S
  • 通讯作者:
    Tomlinson S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oliver E Jensen其他文献

Can Mathematical Models Predict the Outcomes of Prostate Cancer Patients Undergoing Intermittent Androgen Deprivation Therapy
数学模型可以预测接受间歇性雄激素剥夺治疗的前列腺癌患者的结果吗
  • DOI:
    10.1142/s1793048014300023
  • 发表时间:
    2014-06-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Rinzel;Kristin R Swanson;Oliver E Jensen;Arthur Tbd;L;er;er;Alison Tbd;Galvani;Lu J
  • 通讯作者:
    Lu J

Oliver E Jensen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oliver E Jensen', 18)}}的其他基金

The 4-dimensional plant: enhanced mechanical canopy excitation for improved crop performance
4 维植物:增强冠层机械激励以改善作物性能
  • 批准号:
    BB/R001537/1
  • 财政年份:
    2017
  • 资助金额:
    $ 43.39万
  • 项目类别:
    Research Grant

相似海外基金

CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
  • 批准号:
    EP/X040828/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.39万
  • 项目类别:
    Research Grant
CHAI - EPSRC AI Hub for Causality in Healthcare AI with Real Data
CHAI - EPSRC AI 中心,利用真实数据研究医疗保健 AI 中的因果关系
  • 批准号:
    EP/Y028856/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.39万
  • 项目类别:
    Research Grant
CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
  • 批准号:
    EP/Y032489/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.39万
  • 项目类别:
    Research Grant
EPSRC-SFI Aluminium-Rich Nitride Electronics (ARNE)
EPSRC-SFI 富铝氮化物电子器件 (ARNE)
  • 批准号:
    EP/X036901/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.39万
  • 项目类别:
    Research Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
  • 批准号:
    EP/V027395/2
  • 财政年份:
    2024
  • 资助金额:
    $ 43.39万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了