Advanced Optical Frequency Comb Technologies and Applications

先进光频梳技术及应用

基本信息

  • 批准号:
    EP/W002868/1
  • 负责人:
  • 金额:
    $ 219.53万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Technologies underpin economic and industrial advances and improvements in healthcare, education and societal and public infrastructure. Technologies of the future depend on scientific breakthroughs of the past and present, including new knowledge bases, ideas, and concepts. The proposed international network of interdisciplinary centre-to-centre collaborations aims to drive scientific and technological progress by advancing and developing a new science platform for emerging technology - the optical frequency comb (OFC) with a range of practical applications of high industrial and societal importance in telecommunications, metrology, healthcare, environmental applications, bio-medicine, food industry and agri-tech and many other applications.The optical frequency comb is a breakthrough photonic technology that has already revolutionised a range of scientific and industrial fields. In the family of OFC technologies, dual-comb spectroscopy plays a unique role as the most advanced platform combining the strengths of conventional spectroscopy and laser spectroscopy. Measurement techniques relying on multi-comb, mostly dual-comb and very recently tri-combs, offer the promise of exquisite accuracy and speed. The large majority of initial laboratory results originate from cavity-based approaches either using bulky powerful Ti:Sapphire lasers, or ultra-compact micro-resonators. While these technologies have many advantages, they also feature certain drawbacks for some applications. They require complex electronic active stabilisation schemes to phase-lock the different single-combs together, and the characteristics of the multi-comb source are not tuneable since they are severely dictated by the opto-geometrical parameters of the cavity. Thus, their repetition rates cannot be optimised to the decay rates of targeted samples, nor their relative repetition rates to sample the response of the medium. Such lack of versatility leads to speed and resolution limitations. These major constraints impact the development of these promising systems and make difficult their deployment outside the labs. To drive OFC sources, and in particular, multi-comb source towards a tangible science-to-technology breakthrough, the current state of the art shows that a fundamental paradigm shift is required to achieve the needs of robustness, performance and versatility in repetition rates and/or comb optical characteristics as dictated by the diversity of applications. In this project we propose and explore new approaches to create flexible and tunable comb sources, based on original design concepts. The novelty and transformative nature of our programme is in addressing engineering challenges and designs treating nonlinearity as an inherent part of the engineering systems rather than as a foe. Using the unique opportunity provided by the EPSRC international research collaboration programme, this project will bring together a critical mass of academic and industrial partners with complimentary expertise ranging from nonlinear mathematics to industrial engineering to develop new concepts and ideas underpinning emerging and future OFC technologies. The project will enhance UK capabilities in key strategic areas including optical communications, laser technology, metrology, and sensing, including the mid-IR spectral region, highly important for healthcare and environment applications, food, agri-tech and bio-medical applications. Such a wide-ranging and transformative project requires collaborative efforts of academic and industrial groups with complimentary expertise across these fields. There are currently no other UK projects addressing similar research challenges. Therefore, we believe that this project will make an important contribution to UK standing in this field of high scientific and industrial importance.
技术基于经济和工业进步以及医疗保健,教育以及社会和公共基础设施的改进。未来的技术取决于过去和现在的科学突破,包括新的知识基础,思想和概念。 The proposed international network of interdisciplinary centre-to-centre collaborations aims to drive scientific and technological progress by advancing and developing a new science platform for emerging technology - the optical frequency comb (OFC) with a range of practical applications of high industrial and societal importance in telecommunications, metrology, healthcare, environmental applications, bio-medicine, food industry and agri-tech and many other applications.The optical frequency梳子是一项突破性的光子技术,已经彻底改变了一系列科学和工业领域。在OFC技术的家族中,双弯曲光谱是最先进的平台结合了传统光谱和激光光谱法的最先进平台。依靠多弯曲的测量技术,主要是双重炸弹和最近的三圈,提供了精致的准确性和速度的希望。绝大多数初始实验室结果源于使用笨重的TI:蓝宝石激光器或超紧凑型微谐振器的基于空腔的方法。尽管这些技术具有许多优势,但它们还具有某些应用程序的某些缺点。他们需要复杂的电子主动稳定方案来将不同的单人物一起锁定,并且多弯曲源的特征是不可调的,因为它们是由腔的光学地形参数严重决定的。因此,它们的重复率不能优化针对目标样品的衰减速率,也不能相对重复率来采样培养基的响应。这种缺乏多功能性会导致速度和分辨率限制。这些主要限制会影响这些有前途的系统的发展,并使他们在实验室外部部署很困难。为了推动OFC来源,尤其是多弹能源朝着有形科学到技术的突破,目前的最新状态表明,需要基本的范式转移,以满足重复速率的稳健性,性能和多功能性的需求,并按照应用程序的多样性来指示,以决定性范围。在这个项目中,我们提出并探索了基于原始设计概念的新方法,以创建灵活而可调的梳子来源。我们计划的新颖性和变革性在于应对工程挑战和设计将非线性视为工程系统的固有部分而不是敌人。利用EPSRC国际研究合作计划提供的独特机会,该项目将汇集大量的学术和工业合作伙伴,并提供免费的专业知识,从非线性数学到工业工程,以开发新的概念和思想,这些概念和思想基于新兴和未来的OFC技术。该项目将增强英国在关键战略领域的能力,包括光学通信,激光技术,计量和感应,包括中期IR光谱区域,对于医疗保健和环境应用,食品,农业技术和生物医学应用非常重要。如此广泛的变革性项目需要在这些领域具有免费专业知识的学术和工业团体的合作努力。目前,没有其他针对类似研究挑战的项目。因此,我们认为该项目将为英国的重要贡献做出重要的贡献,该领域在这一具有高度科学和工业重要性的领域。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Impact of pump pulse duration on modulation instability Kerr frequency combs in fiber Fabry-Pérot resonators.
泵浦脉冲持续时间对光纤法布里-珀罗谐振器中克尔频率梳调制不稳定性的影响。
  • DOI:
    10.1364/ol.506100
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Bunel T
  • 通讯作者:
    Bunel T
Enhanced THz Generation From Interdigitated Quantum Dot Based Photoconductive Antenna Operating in a Quasi-Ballistic Regime
在准弹道状态下运行的基于叉指量子点的光电导天线增强了太赫兹的产生
Tunable Polarization-Multiplexed Single-Cavity Dual-Comb.
Intra-envelope four-wave mixing in optical fibers.
光纤中的包络内四波混频。
  • DOI:
    10.1364/oe.501616
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Bancel EL
  • 通讯作者:
    Bancel EL
Polarization dynamics, stability and tunability of a dual-comb polarization-multiplexing ring-cavity fiber laser
  • DOI:
    10.1016/j.rinp.2023.106260
  • 发表时间:
    2023-02-09
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Cuevas, Alberto Rodriguez;Kbashi, Hani J.;Sergeyev, Sergey
  • 通讯作者:
    Sergeyev, Sergey
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergei Turitsyn其他文献

Sergei Turitsyn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergei Turitsyn', 18)}}的其他基金

Next generation hworigh-speed optical netks for metro access
用于城域接入的下一代高速光纤网络
  • 批准号:
    EP/Y031024/1
  • 财政年份:
    2024
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Research Grant
Application of Nonlinear Integrable Systems to Optical Data Processing, Transmission and Detection.
非线性可积系统在光学数据处理、传输和检测中的应用。
  • 批准号:
    EP/D050812/1
  • 财政年份:
    2006
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Research Grant

相似国自然基金

基于介质超表面连续域束缚态的非线性光学频率转换研究
  • 批准号:
    12304420
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于光学反馈频率锁定的中红外NICE-OHMS技术研究
  • 批准号:
    62375161
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
飞秒激光诱导非线性晶体的导波光学效应及频率转换研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高次谐波技术产生高重频宽波段光学频率梳的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高次谐波技术产生高重频宽波段光学频率梳的研究
  • 批准号:
    12204178
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Technology to Realize the Full Potential of UHF MRI
充分发挥 UHF MRI 潜力的技术
  • 批准号:
    10549850
  • 财政年份:
    2019
  • 资助金额:
    $ 219.53万
  • 项目类别:
Technology to Realize the Full Potential of UHF MRI
充分发挥 UHF MRI 潜力的技术
  • 批准号:
    10376730
  • 财政年份:
    2019
  • 资助金额:
    $ 219.53万
  • 项目类别:
Efficient and practical quantum information processing enabled by advanced coherent control of on-chip optical frequency combs
通过片上光学频率梳的先进相干控制实现高效实用的量子信息处理
  • 批准号:
    506504-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Strategic Projects - Group
Efficient and practical quantum information processing enabled by advanced coherent control of on-chip optical frequency combs
通过片上光学频率梳的先进相干控制实现高效实用的量子信息处理
  • 批准号:
    506504-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Strategic Projects - Group
Efficient and practical quantum information processing enabled by advanced coherent control of on-chip optical frequency combs
通过片上光学频率梳的先进相干控制实现高效实用的量子信息处理
  • 批准号:
    506504-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Strategic Projects - Group
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了