Plasma Microreactors: a Manufacturing Platform for Nanoscale Metal Oxides

等离子体微反应器:纳米级金属氧化物的制造平台

基本信息

  • 批准号:
    EP/V055232/1
  • 负责人:
  • 金额:
    $ 86.59万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Transition metal oxides (TMOs) are an extraordinary class of materials that have found wide applicability for a number of century-defining technologies (e.g. flat-panel display, capacitors and energy storage) mainly due to their dielectric properties and facilitated by chemical inertness. TMOs are also conceptually simple materials with crucially important properties, they can be formed by low-cost and naturally abundant metals in combination with oxygen, therefore offering commercially attractive materials solutions. Recently, TMOs have seen a surge in application demand and research interest, which revealed their fundamental complexity and yet-to-discover application opportunities. Doping, defect engineering, quantum confinement and extending to ternary or high entropy oxides can lead to new or improved properties and can create disruptive materials. However, to achieve a step change in application performance, manufacturing precision is required at scale, which motivates the production of TMOs materials with ever increasing precision as well as the necessity to establish scalable manufacturing processes. This project will deliver a platform to synthesize TMOs materials with nanoscale precision (down to sub-10 nm scales) and atomically controlled chemical composition. A cold microplasma reactor operated at atmospheric pressure is at the core of this manufacturing technology platform which relies on the most recent 21st century plasma technology developments. The synthesis of TMOs is carried out through the interactions of a cold atmospheric pressure microplasma with a solid metal feedstock in an oxygen-containing gas, contributing to reduce waste and leading to a sustainable, zero-loss and 'greener' manufacturing technology.
过渡金属氧化物(TMOS)是一种非凡类型的材料,发现广泛适用于许多世纪定义的技术(例如平板显示,电容器和能量存储),主要是由于它们的介电性能并由化学惰性促进。 TMOS在概念上也是具有至关重要的特性的概念上的简单材料,它们可以由低成本和自然丰富的金属与氧气结合使用,因此提供了商业上吸引人的材料解决方案。最近,TMO看到了应用需求和研究兴趣的激增,这揭示了他们的基本复杂性和尚未发现的应用程序机会。掺杂,缺陷工程,量子限制并扩展到三元或高熵氧化物可能会导致新的或改进的特性,并可能产生破坏性的材料。但是,为了实现应用程序性能的步骤变化,规模上需要制造精度,这激发了TMOS材料的生产,其精度越来越高以及建立可扩展制造过程的必要性。该项目将提供一个平台,以合成具有纳米级精度(降至低于10 nm尺度)的TMOS材料和原子控制的化学成分。在大气压力下运行的冷微质量反应堆是该制造技术平台的核心,该平台依靠最近21世纪的等离子体技术发展。 TMOS的合成是通过冷大气压微量质量与含氧气体中的固体金属原料的相互作用进行的,这有助于减少废物并导致可持续的零损坏和“绿色”制造技术。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient solar-thermal energy conversion with surfactant-free Cu-oxide nanofluids
  • DOI:
    10.1016/j.nanoen.2022.108112
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    17.6
  • 作者:
    H. Moghaieb;D. Padmanaban;R. McGlynn;A. Haq;C. Maddi;P. Maguire;D. Mariotti;Harjit Singh;Praveen Kumar;M. Arredondo
  • 通讯作者:
    H. Moghaieb;D. Padmanaban;R. McGlynn;A. Haq;C. Maddi;P. Maguire;D. Mariotti;Harjit Singh;Praveen Kumar;M. Arredondo
A Single-Step Process to Produce Carbon Nanotube-Zinc Compound Hybrid Materials
  • DOI:
    10.1002/smtd.202300710
  • 发表时间:
    2023-11-23
  • 期刊:
  • 影响因子:
    12.4
  • 作者:
    Mcglynn,Ruairi;Brunet,Paul;Mariotti,Davide
  • 通讯作者:
    Mariotti,Davide
Rapid Plasma Exsolution from an A-site Deficient Perovskite Oxide at Room Temperature
  • DOI:
    10.1002/aenm.202201131
  • 发表时间:
    2022-10-03
  • 期刊:
  • 影响因子:
    27.8
  • 作者:
    Khalid, Hessan;ul Haq, Atta;Mariotti, Davide
  • 通讯作者:
    Mariotti, Davide
XPS investigation of MnO2 deposits functionalized with graphitic carbon nitride
  • DOI:
    10.1116/6.0002827
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Benedet,Mattia;Gasparotto,Alberto;Barreca,Davide
  • 通讯作者:
    Barreca,Davide
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Davide Mariotti其他文献

Plasma technologies for engineering of the direct energy band gap of silicon at quantum confinement size
用于在量子限制尺寸下设计硅直接能带隙的等离子体技术
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vladimir Svrcek;Mickael Lozac’h;Davide Mariotti;Koji Matsubara
  • 通讯作者:
    Koji Matsubara
Semiconducting Alloyed Silicon-Tin Nanocrystals as Up Converter Layer for Hybrid Solar Cells
半导体合金硅锡纳米晶体作为混合太阳能电池的上转换器层
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mickael Lozac’h;Vladimir Svrcek;Davide Mariotti;Koji Matsubara
  • 通讯作者:
    Koji Matsubara
Combinatorial atomistic-to-AI prediction and experimental validation of heating effects in 350 F supercapacitor modules
350 F 超级电容器模块热效应的组合原子到 AI 预测和实验验证
  • DOI:
    10.1016/j.ijheatmasstransfer.2021.121075
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Zheng Bo;Haowen Li;Huachao Yang;Changwen Li;Shenghao Wu;Chenxuan Xu;Guoping Xiong;Davide Mariotti;Jianhua Yan;Kefa Cen;Kostya Ostrikov
  • 通讯作者:
    Kostya Ostrikov
Microplasma induced silicon quantum dots surface and energy band gap engineering.
微等离子体诱导硅量子点表面和能带隙工程。
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vladimir Svrcek;Mickael Lozac’h;Somak Mitra;Davide Mariotti
  • 通讯作者:
    Davide Mariotti
Guiding principles for indigenous research practices
本土研究实践的指导原则
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin C. Snow;D. Hays;Guia Caliwagan;D. Ford;Davide Mariotti;J. Mwendwa;W. Scott
  • 通讯作者:
    W. Scott

Davide Mariotti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Davide Mariotti', 18)}}的其他基金

A multi-function XPS-UPS system with load-locked advanced sample preparation stages
具有负载锁定高级样品制备阶段的多功能 XPS-UPS 系统
  • 批准号:
    EP/R008841/1
  • 财政年份:
    2018
  • 资助金额:
    $ 86.59万
  • 项目类别:
    Research Grant
Emergent Nanomaterials (Critical Mass Proposal)
新兴纳米材料(临界质量提案)
  • 批准号:
    EP/R023638/1
  • 财政年份:
    2018
  • 资助金额:
    $ 86.59万
  • 项目类别:
    Research Grant
Plasma-based synthesis of low-cost and environmentally friendly quantum dots with tailored energy band structure
基于等离子体合成具有定制能带结构的低成本且环保的量子点
  • 批准号:
    EP/M024938/1
  • 财政年份:
    2015
  • 资助金额:
    $ 86.59万
  • 项目类别:
    Research Grant
All Inorganic Bulk Heterojunction Solar Cell Devices
所有无机体异质结太阳能电池器件
  • 批准号:
    EP/K022237/1
  • 财政年份:
    2013
  • 资助金额:
    $ 86.59万
  • 项目类别:
    Research Grant
SGER: Application of atmospheric microplasma to fuel reforming
SGER:大气微等离子体在燃料重整中的应用
  • 批准号:
    0839961
  • 财政年份:
    2008
  • 资助金额:
    $ 86.59万
  • 项目类别:
    Standard Grant

相似国自然基金

仿生构建多酶复合纳米凝胶反应器用于重塑慢性伤口微环境
  • 批准号:
    52303185
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多级蜂窝微反应器内气液流动与传质特性及其放大规律研究
  • 批准号:
    22308249
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
微填充床反应器内流型划分与局部传质性能研究
  • 批准号:
    22308188
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
感染微环境响应纳米酶反应器的构筑及其仿生催化抗尿路致病菌的研究
  • 批准号:
    32371407
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于高压电纺技术可控构筑碳纳米管纳米反应器及其催化微环境调控研究
  • 批准号:
    52303030
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Coflobiopro: Continuous flow biocatalytic process for production of value-added chemicals using magnetic nanoparticle immobilized enzyme microreactors
Coflobiopro:使用磁性纳米颗粒固定化酶微反应器生产增值化学品的连续流生物催化工艺
  • 批准号:
    EP/X032078/1
  • 财政年份:
    2023
  • 资助金额:
    $ 86.59万
  • 项目类别:
    Fellowship
Nanofurnaces and Microreactors for Catalysis
用于催化的纳米炉和微反应器
  • 批准号:
    RGPIN-2022-04078
  • 财政年份:
    2022
  • 资助金额:
    $ 86.59万
  • 项目类别:
    Discovery Grants Program - Individual
USRA Summer Student Project on modelling of reactive transport in microreactors
USRA 暑期学生项目:微反应器反应输运建模
  • 批准号:
    562413-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 86.59万
  • 项目类别:
    University Undergraduate Student Research Awards
Testing of Steam Methane Reforming Electric Microreactors
蒸汽甲烷重整电微反应器的测试
  • 批准号:
    567452-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 86.59万
  • 项目类别:
    University Undergraduate Student Research Awards
Process Intensification Using Gas-Liquid Microreactors
使用气液微反应器强化工艺
  • 批准号:
    564635-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 86.59万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了